scholarly journals A High-Performance Multiplex Immunoassay for Serodiagnosis of Flavivirus-Associated Neurological Diseases in Horses

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Cécile Beck ◽  
Philippe Desprès ◽  
Sylvie Paulous ◽  
Jessica Vanhomwegen ◽  
Steeve Lowenski ◽  
...  

West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) are flaviviruses responsible for severe neuroinvasive infections in humans and horses. The confirmation of flavivirus infections is mostly based on rapid serological tests such as enzyme-linked immunosorbent assays (ELISAs). These tests suffer from poor specificity, mainly due to antigenic cross-reactivity among flavivirus members. Robust diagnosis therefore needs to be validated through virus neutralisation tests (VNTs) which are time-consuming and require BSL3 facilities. The flavivirus envelope (E) glycoprotein ectodomain is composed of three domains (D) named DI, DII, and DIII, with EDIII containing virus-specific epitopes. In order to improve the serological differentiation of flavivirus infections, the recombinant soluble ectodomain of WNV E (WNV.sE) and EDIIIs (rEDIIIs) of WNV, JEV, and TBEV were synthesised using theDrosophilaS2 expression system. Purified antigens were covalently bonded to fluorescent beads. The microspheres coupled to WNV.sE or rEDIIIs were assayed with about 300 equine immune sera from natural and experimental flavivirus infections and 172 nonimmune equine sera as negative controls. rEDIII-coupled microspheres captured specific antibodies against WNV, TBEV, or JEV in positive horse sera. This innovative multiplex immunoassay is a powerful alternative to ELISAs and VNTs for veterinary diagnosis of flavivirus-related diseases.

2011 ◽  
Vol 92 (12) ◽  
pp. 2821-2829 ◽  
Author(s):  
Karen L. Mansfield ◽  
Daniel L. Horton ◽  
Nicholas Johnson ◽  
Li Li ◽  
Alan D. T. Barrett ◽  
...  

Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.


2016 ◽  
Vol 69 (3-4) ◽  
pp. 93-98 ◽  
Author(s):  
Ivana Hrnjakovic-Cvjetkovic ◽  
Dejan Cvjetkovic ◽  
Aleksandra Patic ◽  
Jelena Radovanov ◽  
Gordana Kovacevic ◽  
...  

Introduction. Tick-borne meningoencephalitis virus is a flavivirus that causes the most important vector-borne central nervous system infection in many countries of Europe and Asia. There are three subtypes of tick-borne encephalitis virus: European, Siberian and the Far-Eastern subtype. Transmission. In endemic areas, the virus remains in transmissive cycles between Ixodes ticks and small rodents. Clinical picture. In most cases (70?98%) infection goes asymptomatically. In about one-third of meningitis cases, meningoencephalitis or meningomyelitis is developed. Postencephalytic syndrome may be the complication of the infection, presenting with neurological symptoms. Diagnosis. Etiologic diagnosis of tick-borne meningoencephalitis is only made on basis of laboratory analyses. Reverse transcription-polymerase chain reaction is used for determining the presence of virus in the blood and cerebrospinal fluid. Antibodies in blood and cerebrospinal fluid can be detected by serological tests. Prevention. The most efficient way to control this potentially severe disease with possible serious long-term consequences is vaccination. It should be recommended to persons who live or travel to endemic areas. Conclusion. In Serbia, tick-borne encephalitis virus infection belongs to the list of reportable diseases; however, there are no reported cases because the diagnostics is not performed routinely. We believe that the significance of this zoonosis must be examined in our country and some of its parts because of preliminary positive serological findings found out in Vojvodina as well as because of reported cases in neighboring countries such as Hungary and Croatia and its worldwide distribution.


2014 ◽  
Vol 10 (1) ◽  
pp. 78 ◽  
Author(s):  
Christine Klaus ◽  
Ute Ziegler ◽  
Donata Kalthoff ◽  
Bernd Hoffmann ◽  
Martin Beer

2018 ◽  
Vol 22 (4) ◽  
pp. 459-467 ◽  
Author(s):  
I. K. Baykov ◽  
L. A. Emelyanova ◽  
L. M. Sokolova ◽  
E. M. Karelina ◽  
A. L. Matveev ◽  
...  

A drug for the prevention and therapy of tick-borne encephalitis virus is being developed on the basis of the protective chimeric antibody ch14D5a. At the same time, the epitope recognized by this antibody on the surface of glycoprotein E has not been localized yet. The aim of this work was to identify the domain of glycoprotein E, to which the protective antibody ch14D5a binds. As a result, four recombinant variants of glycoprotein E were generated using the bacterial expression system: (1) the rE protein containing the domains D1, D2, and D3 of glycoprotein E; (2) the rED1+2 protein containing domains D1 and D2; (3) the rED3_301 protein, which is domain D3 of glycoprotein E, and (4) the rED3_294 protein comprising domain D3 and a hinge region connecting domains D1 and D3. The rED3_294 and rED3_301 proteins were obtained in soluble monomeric form. The rE and rED1+2 proteins were extracted from the inclusion bodies of Escherichia coli. Using Western blot analysis and surface plasmon resonance analysis, it was demonstrated that the protective chimeric antibody ch14D5a and its Fab fragment bound specifically to domain D3 of glycoprotein E. Since the antibodies recognizing epitopes on the surface of domain D3 do not tend to cause antibody-dependent enhancement of the infection as compared to antibodies directed to domains D1 and D2, the data obtained confirm the promise of using the antibody ch14D5a in the development of a therapeutic preparation against the tick-borne encephalitis virus.


2015 ◽  
Vol 22 (7) ◽  
pp. 754-760 ◽  
Author(s):  
Fabian H. Weissbach ◽  
Hans H. Hirsch

ABSTRACTDespite the availability of protective vaccines, tick-borne encephalitis virus (TBEV) infections have been increasingly reported to the European Centre for Disease Prevention and Control in the past 2 decades. Since the diagnosis of TBEV exposure relies on serological testing, we compared two commercial enzyme-linked immunosorbent assays (ELISAs), i.e., Immunozym FSME IgG assay (ELISA-1) and Euroimmun FSME Vienna IgG assay (ELISA-2). Both assays use whole TBEV antigens, but they differ in viral strains (Neudoerfl for ELISA-1 and K23 for ELISA-2) and cutoff values. In testing of samples from 398 healthy blood donors, ELISA-1 showed higher reactivity levels than ELISA-2 (P< 0.001), suggesting different assay properties. This finding was supported by Bland-Altman analysis of the optical density at 450 nm (OD450) (mean bias, +0.32 [95% limits of agreement, −0.31 to +0.95]) and persisted after transformation into Vienna units. Concordant results were observed for 276 sera (69%) (44 positive and 232 negative results). Discordant results were observed for 122 sera (31%); 15 were fully discordant, all being ELISA-1 positive and ELISA-2 negative, and 107 were partially discordant (101 being ELISA-1 indeterminate and ELISA-2 negative and 6 having positive or indeterminate reactivity in both ELISAs). Neutralization testing at a 1:10 dilution yielded positive results for 33 of 44 concordant positive sera, 1 of 15 fully discordant sera, and 1 of 33 partially discordant sera. Indirect immunofluorescence testing revealed high antibody titers of ≥100 for yellow fever virus in 18 cases and for dengue virus in one case, suggesting that cross-reactivity contributed to the ELISA-1 results. We conclude that (i) cross-reactivity among flaviviruses remains a limitation of TBEV serological testing, (ii) ELISA-2 revealed reasonable sensitivity and specificity for anti-TBEV IgG population screening of human sera, and (iii) neutralization testing is most specific and should be reserved for selective questions.


Author(s):  
Joon Young Song

Although no human case of tick-borne encephalitis (TBE) has been documented in South Korea to date, surveillance studies have been conducted to evaluate the prevalence of tick-borne encephalitis virus (TBEV) in wild ticks.


Author(s):  
Jana Kerlik

The former Czechoslovak Republic was one of the first countries in Europe where the tick-borne encephalitis virus (TBEV) was identified.


Sign in / Sign up

Export Citation Format

Share Document