scholarly journals Risk and Resilience Analysis of Complex Network Systems Considering Cascading Failure and Recovery Strategy Based on Coupled Map Lattices

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Fuchun Ren ◽  
Tingdi Zhao ◽  
Hongli Wang

Risk and resilience are important and challenging issues in complex network systems since a single failure may trigger a whole collapse of the systems due to cascading effect. New theories, models, and methods are urgently demanded to deal with this challenge. In this paper, a coupled map lattices (CML) based approach is adopted to analyze the risk of cascading process in Watts-Strogatz (WS) small-world network and Barabási and Albert (BA) scale-free network, respectively. Then, to achieve an effective and robust system and provide guidance in countering the cascading failure, a modified CML model with recovery strategy factor is proposed. Numerical simulations are put forward based on small-world CML and scale-free CML. The simulation results reveal that appropriate recovery strategies would significantly improve the resilience of networks.

Author(s):  
Jianwei Wang ◽  
Yuxin Guo ◽  
Wei Kai

The robustness of complex networks responding to attacks has long been the focus of network science researching. Nonetheless, the precious studies mostly focus on network performance when facing malicious attacks and random failures while rarely pay attention to the influences of scales of attacking. It is wondering if it is an actual fact that the network is more fragile when attacking scale is exacerbated. In this paper, we are committed to exploring the influences related to the very factor of attacking scale from the perspective of cascading failure problem of dynamic network theory. We construct the model with a regular ranking edge deletion method by simulating attacking scale with [Formula: see text] and [Formula: see text] is denoted as attacked edge number. To be specific, we rank the edges according to initial distributed loads and delete edges in the ranked list, and subsequently observe the changes of robustness in the networks, including BA scale-free network, WS small-world network and several real traffic networks. During the process, an unusual counterintuitive phenomenon captures our attention that the network damages caused by attacks do not always grow with the increase of attacked edges number. We specifically demonstrate and analyze this abnormal cascading propagation phenomenon, ascribing this paradox to the dynamics of the load and the connections of the network structure. Our work may offer a new angle on better controlling the spread of cascading failure and remind the importance of effectively protecting networks from underlying dangers.


2014 ◽  
Vol 496-500 ◽  
pp. 2338-2341
Author(s):  
Jun Shang ◽  
Hao Qiang Liu ◽  
Qiang Liu ◽  
Zi Qi Liu

WSN is the network which is used mostly in the world nowadays, and it has the characteristics that lower cost and better functions than other kinds of the network, and the WSN network is built by the ordinary nodes and the super nodes.Theoretical study of the complex network is widely involved in the fields of computer networks, and the applied research becomes more and more important in the future. It has caused many academic attention about how to apply the complex network theory among the specific application in recent years. In the complex network theory, there has been a number of important research results about the use of the small-world network, scale-free network in the field of transportation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251993
Author(s):  
Yan Sun ◽  
Haixing Zhao ◽  
Jing Liang ◽  
Xiujuan Ma

Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of directed networks is very significant to effectively quantify the structural information of the whole network. Typical complex network models include nearest-neighbour coupling network, small-world network, scale-free network, and random network. These network models are abstracted as undirected graphs without considering the direction of node connection. For complex networks, modeling through the direction of network nodes is extremely challenging. In this paper, based on these typical models of complex network, a directed network model considering node connection in-direction is proposed, and the eigenvalue entropies of three matrices in the directed network is defined and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are calculated in directed nearest-neighbor coupling, directed small world, directed scale-free and directed random networks. Through the simulation experiment on the real directed network, the result shows that the eigenvalue entropy of the real directed network is between the eigenvalue entropy of directed scale-free network and directed small-world network.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Xiao-Bing Hu ◽  
Ming Wang ◽  
Mark S. Leeson

Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM) is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs) of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA) to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260940
Author(s):  
Jiuxia Guo ◽  
Yang Li ◽  
Zongxin Yang ◽  
Xinping Zhu

The resilience and vulnerability of airport networks are significant challenges during the COVID-19 global pandemic. Previous studies considered node failure of networks under natural disasters and extreme weather. Herein, we propose a complex network methodology combined with data-driven to assess the resilience of airport networks toward global-scale disturbance using the Chinese airport network (CAN) and the European airport network (EAN) as a case study. The assessment framework includes vulnerability and resilience analyses from the network- and node-level perspectives. Subsequently, we apply the framework to analyze the airport networks in China and Europe. Specifically, real air traffic data for 232 airports in China and 82 airports in Europe are selected to form the CAN and EAN, respectively. The complex network analysis reveals that the CAN and the EAN are scale-free small-world networks, that are resilient to random attacks. However, the connectivity and vulnerability of the CAN are inferior to those of the EAN. In addition, we select the passenger throughput from the top-50 airports in China and Europe to perform a comparative analysis. By comparing the resilience evaluation of individual airports, we discovered that the factors of resilience assessment of an airport network for global disturbance considers the network metrics and the effect of government policy in actual operations. Additionally, this study also proves that a country’s emergency response-ability towards the COVID-19 has a significantly affectes the recovery of its airport network.


2011 ◽  
Vol 181-182 ◽  
pp. 14-18
Author(s):  
Yi He

At the background of archives blog on Internet, this paper constructs a directed complex network model, and analyzes the network characters such as degree distribution. To verify its efficiency, we collect blogs’ information and set up a complex network..From the analysis result of the simulation and demonstration network, we know that they have the same characters, which show that, the virtual society network has small-world effect and scale-free character compared with real society network. The results indicate that the establishment of archives blog is favor to spread rapidly archives information, improve information sharing efficiency and promote the development of archives technology.


2006 ◽  
Vol 17 (09) ◽  
pp. 1303-1311 ◽  
Author(s):  
SUMIYOSHI ABE ◽  
STEFAN THURNER

The Erdös–Rényi classical random graph is characterized by a fixed linking probability for all pairs of vertices. Here, this concept is generalized by drawing the linking probability from a certain distribution. Such a procedure is found to lead to a static complex network with an arbitrary connectivity distribution. In particular, a scale-free network with the hierarchical organization is constructed without assuming any knowledge about the global linking structure, in contrast to the preferential attachment rule for a growing network. The hierarchical and mixing properties of the static scale-free network thus constructed are studied. The present approach establishes a bridge between a scalar characterization of individual vertices and topology of an emerging complex network. The result may offer a clue for understanding the origin of a few abundance of connectivity distributions in a wide variety of static real-world networks.


2011 ◽  
Vol 145 ◽  
pp. 224-228 ◽  
Author(s):  
Xiao Song ◽  
Bing Cheng Liu ◽  
Guang Hong Gong

Military SoS increasingly shows its relation of complex network. According to complex network theory, we construct a SoS network topology model for network warfare simulation. Analyzing statistical parameters of the model, it is concluded that the topology model has small-world, high-aggregation and scale-free properties. Based on this model we mainly simulate and analyze vulnerability of the network. And this provides basis for analysis of the robustness and vulnerability of real battle SoS network.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950266 ◽  
Author(s):  
Jin-Xuan Yang

Network structure will evolve over time, which will lead to changes in the spread of the epidemic. In this work, a network evolution model based on the principle of preferential attachment is proposed. The network will evolve into a scale-free network with a power-law exponent between 2 and 3 by our model, where the exponent is determined by the evolution parameters. We analyze the epidemic spreading process as the network evolves from a small-world one to a scale-free one, including the changes in epidemic threshold over time. The condition of epidemic threshold to increase is given with the evolution processes. The simulated results of real-world networks and synthetic networks show that as the network evolves at a low evolution rate, it is more conducive to preventing epidemic spreading.


Sign in / Sign up

Export Citation Format

Share Document