scholarly journals Detailed Analysis of the Timing Measurements in Optical Position Sensing Devices Based on Laser Beam Deflection

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Andreas Tortschanoff

I present a detailed analysis of the timing signals observed, when measuring the oscillation of a Lissajous scanner by sending a reflected laser beam onto carefully placed trigger diodes. This technique was used in a device which we have developed recently for the measurement of resonant MEMS scanner mirrors. For 2D scanner mirrors, cross talk between the two axes is observed. This cross talk can be well understood theoretically. In this paper, a quantitative analytical description is presented, which is confirmed by experimental results.

Author(s):  
Petro P. Trokhimchuck

The problems of the appearance of laser-induced filamets in the matter are discussed. A detailed analysis of the formation of such structures in various media: from air to silicon carbide, is represented. The influence of the spectral composition, the number of pulses and the duration of the irradiation and the medium on the geometric dimensions of the resulting structures and on their phase states is shown. In this case, the sizes of filaments vary from several hundred nanometers for silicon carbide to several hundred meters for air. The emission spectrum is continuous, and resembles the Cherenkov radiation. Therefore, the idea was developed that the radiation of filaments and the radiation of Cherenkov are of the same nature. The problems of the mechanisms of the formation of laser-induced destruction cascades in silicon carbide are discussed. To explain the experimental results, we used modified Rayleigh models (diffraction stratification of the laser beam and critical sizes of nanovoids), physicochemical models for determining critical energy values for the corresponding processes, and models for optically-induced Cherenkov radiation.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
B. J. Maundy ◽  
A. S. Elwakil ◽  
C. Psychalinos

Two novel nonlinear circuits that exhibit an all-positive pinched hysteresis loop are proposed. These circuits employ two NMOS transistors, one of which operates in its triode region, in addition to two first-order filter sections. We show the equivalency to a charge-controlled resistance (memristance) in a decremental state via detailed analysis. Simulation and experimental results verify the proposed theory.


Author(s):  
Imtiyaz A. Najar ◽  
W. Bari

In this study, we have performed a detailed analysis of genuine pion correlations and fluctuations in terms of the normalized factorial comulant moments of second and third orders, [Formula: see text] and [Formula: see text], in case of [Formula: see text]O–AgBr interactions at [Formula: see text][Formula: see text]A and [Formula: see text][Formula: see text]A GeV/c. The experimental results are compared with the predictions of AMPT and UrQMD model simulated events. The UrQMD model reproduces the trends in experimental results but the strength of correlation is much smaller. However, the AMPT model does not also replicate all features of the experimental data. The genuine two-particle and three-particle correlations are found to become weaker with the increase in momentum of the projectile nucleus.


1998 ◽  
Vol 4 (S2) ◽  
pp. 640-641
Author(s):  
David V. Lang

Scanning Capacitance Microscopy (SCM) was first developed in 1985 as a method for sensing tip-to-sample spacing for surface topography profiling in connection with the RCA VideoDisc. Williams and coworkers were the first to use an SCM for obtaining dC/dV doping profiles in semiconductors, albeit with a rather modest resolution of 200 nm. More recently, it has been developed as a 50-nmresolution tool for microscopic doping analysis of semiconductors by measuring the tip-to-sample rf capacitance in an AFM controlled by other means, e.g. by laser beam deflection of a cantilever tip. In this paper we report on the application of SCM to study the 2D doping profiles of InP-based devices, such as multi-quantum well lasers.It is particularly convenient to prepare cross sections of III-V devices, since the material readily cleaves on [110] planes, as compared to silicon where cross sections must be obtained by painstaking polishing.


1992 ◽  
Vol 72 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Constant A. J. Putman ◽  
Bart G. De Grooth ◽  
Niek F. Van Hulst ◽  
Jan Greve

Sign in / Sign up

Export Citation Format

Share Document