scholarly journals Asymptotic Time Averages and Frequency Distributions

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Muhammad El-Taha

Consider an arbitrary nonnegative deterministic process (in a stochastic setting {X(t),  t≥0} is a fixed realization, i.e., sample-path of the underlying stochastic process) with state space S=(-∞,∞). Using a sample-path approach, we give necessary and sufficient conditions for the long-run time average of a measurable function of process to be equal to the expectation taken with respect to the same measurable function of its long-run frequency distribution. The results are further extended to allow unrestricted parameter (time) space. Examples are provided to show that our condition is not superfluous and that it is weaker than uniform integrability. The case of discrete-time processes is also considered. The relationship to previously known sufficient conditions, usually given in stochastic settings, will also be discussed. Our approach is applied to regenerative processes and an extension of a well-known result is given. For researchers interested in sample-path analysis, our results will give them the choice to work with the time average of a process or its frequency distribution function and go back and forth between the two under a mild condition.

Games ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 30
Author(s):  
Eugenio Vicario

In this paper, we analyze the long run dynamics of a multi-agent game played on a one-dimensional lattice with periodic boundary conditions, i.e., a ring. Agents repeatedly play a 2 × 2 coordination game with neighbors where the payoff dominant action and the risk dominant action are distinct. Necessary and sufficient conditions for both the actions to be the unique long run equilibrium are provided. The result is obtained through the application of the radius and modified coradius technique.


Author(s):  
Dmitry Taubinsky

We study a model of opinion formation and analyze the link between network architecture and the “left-right spectrum” that frequently characterizes opinions and beliefs. We correct a key result of DeMarzo, Vayanos and Zwiebel (QJE, 2003) who claim that after some time, an agent’s position on a set of different issues will always be either “left” on all of those issues or “right” on all of those issues. We provide counterexamples to this claim and show that in the long-run an agent’s position can flip-flop between “left” on all issues and “right” on all issues indefinitely. However, we provide necessary and sufficient conditions for a stable left-right characterization of opinions to be possible in the long run. Roughly, a flip-flop will occur when agents give relatively little weight to the opinions of agents with similar political positions (including themselves). Following this intuition, we show that a simple sufficient condition is that agents become “stubborn” over time and give little weight to the opinions of others. Finally, we characterize classes of networks in which it is possible for agents to flip-flop between “left” and “right” indefinitely. We argue that qualitatively, these results are robust to alternative models of opinion formation.


2006 ◽  
Vol 43 (1) ◽  
pp. 115-129
Author(s):  
Árpád Fekete

The notions of statistical limit, limit inferior and limit superior of a measurable function at \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\infty\) \end{document} were introduced by Móricz. These notions can be considered as the nondiscrete analogues of those introduced for sequences of numbers by H. Fast, J. A. Fridy and C. Orhan. Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(0 \not \equiv p\: \mathbb{R}_+ \to \mathbb{R}_+\) \end{document} be a nondecreasing function such that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(p(0)=0\) \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mbox{st-\!}\liminf_{t \to \infty} \frac{p(\lambda t)}{p(t)} >1 \ \text{for every} \lambda >1.$$ \end{document} Given a real- or complex-valued function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(f \in L_{{\rm loc}}^1 (\mathbb{R}_+)\) \end{document}, we define \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$s(x):= \int^x_0 f(u) \, du\ \text{and}\ \sigma(t) := \frac{1}{p(t)} \int^t_0 s(x) d p(x),\quad t>0.$$ \end{document} Our goal is to find necessary and sufficient conditions under which the existence of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mbox{st-}\lim s(t)=l\) \end{document} follows from that of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\mbox{st-}\lim \sigma(t)=l\) \end{document}, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(l\) \end{document} is a finite number. In the case of real-valued functions we present one-sided Tauberian conditions, while in the case of complex-valued functions we present two-sided Tauberian conditions.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2008 ◽  
pp. 134-151
Author(s):  
A. Shastitko ◽  
M. Ovchinnikov

The article proposes an approach to the analysis of social change and contributes to the clarification of concepts of economic policy. It deals in particular with the notion of "change of system". The author considers positive and normative aspects of the analysis of capitalist and socialist systems. The necessary and sufficient conditions for the system to be changed are introduced, their fulfillment is discussed drawing upon the historical and statistical data. The article describes both economic and political peculiarities of the transitional period in different countries, especially in Eastern Europe.


2020 ◽  
pp. 77-90
Author(s):  
V.D. Gerami ◽  
I.G. Shidlovskii

The article presents a special modification of the EOQ formula and its application to the accounting of the cargo capacity factor for the relevant procedures for optimizing deliveries when renting storage facilities. The specified development will allow managers to take into account the following process specifics in the format of a simulated supply chain when managing inventory. First of all, it will allow considering the most important factor of cargo capacity when optimizing stocks. Moreover, this formula will make it possible to find the optimal strategy for the supply of goods if, also, it is necessary to take into account the combined effect of several factors necessary for practice, which will undoubtedly affect decision-making procedures. Here we are talking about the need for additional consideration of the following essential attributes of the simulated cash flow of the supply chain: 1) time value of money; 2) deferral of payment of the cost of the order; 3) pre-agreed allowable delays in the receipt of revenue from goods sold. Developed analysis and optimization procedures have been implemented to models of this type that are interesting and important for a business. This — inventory management systems, the format of which is related to the special concept of efficient supply. We are talking about models where the presence of the specified delays for the outgoing cash flows allows you to pay for the order and the corresponding costs of the supply chain from the corresponding revenue on the re-order interval. Accordingly, the necessary and sufficient conditions are established based on which managers will be able to identify models of the specified type. The purpose of the article is to draw the attention of managers to real opportunities to improve the efficiency of inventory management systems by taking into account these factors for a simulated supply chain.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Sign in / Sign up

Export Citation Format

Share Document