scholarly journals A Four-Stage Fifth-Order Trigonometrically Fitted Semi-Implicit Hybrid Method for Solving Second-Order Delay Differential Equations

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Sufia Zulfa Ahmad ◽  
Fudziah Ismail ◽  
Norazak Senu

We derived a two-step, four-stage, and fifth-order semi-implicit hybrid method which can be used for solving special second-order ordinary differential equations. The method is then trigonometrically fitted so that it is suitable for solving problems which are oscillatory in nature. The methods are then used for solving oscillatory delay differential equations. Numerical results clearly show the efficiency of the new method when compared to the existing explicit and implicit methods in the scientific literature.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hoo Yann Seong ◽  
Zanariah Abdul Majid ◽  
Fudziah Ismail

This paper will consider the implementation of fifth-order direct method in the form of Adams-Moulton method for solving directly second-order delay differential equations (DDEs). The proposed direct method approximates the solutions using constant step size. The delay differential equations will be treated in their original forms without being reduced to systems of first-order ordinary differential equations (ODEs). Numerical results are presented to show that the proposed direct method is suitable for solving second-order delay differential equations.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Sufia Zulfa Ahmad ◽  
Fudziah Ismail ◽  
Norazak Senu

A set of order condition for block explicit hybrid method up to order five is presented and, based on the order conditions, two-point block explicit hybrid method of order five for the approximation of special second order delay differential equations is derived. The method is then trigonometrically fitted and used to integrate second-order delay differential equations with oscillatory solutions. The efficiency curves based on the log of maximum errors versus the CPU time taken to do the integration are plotted, which clearly demonstrated the superiority of the trigonometrically fitted block hybrid method.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 318
Author(s):  
Osama Moaaz ◽  
Amany Nabih ◽  
Hammad Alotaibi ◽  
Y. S. Hamed

In this paper, we establish new sufficient conditions for the oscillation of solutions of a class of second-order delay differential equations with a mixed neutral term, which are under the non-canonical condition. The results obtained complement and simplify some known results in the relevant literature. Example illustrating the results is included.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1159
Author(s):  
Shyam Sundar Santra ◽  
Omar Bazighifan ◽  
Mihai Postolache

In continuous applications in electrodynamics, neural networks, quantum mechanics, electromagnetism, and the field of time symmetric, fluid dynamics, neutral differential equations appear when modeling many problems and phenomena. Therefore, it is interesting to study the qualitative behavior of solutions of such equations. In this study, we obtained some new sufficient conditions for oscillations to the solutions of a second-order delay differential equations with sub-linear neutral terms. The results obtained improve and complement the relevant results in the literature. Finally, we show an example to validate the main results, and an open problem is included.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yongtao Xuan ◽  
Rohul Amin ◽  
Fakhar Zaman ◽  
Zohaib Khan ◽  
Imad Ullah ◽  
...  

In this article, an efficient numerical approach for the solution of second-order delay differential equations to deal with the experimentation of the Internet of Industrial Things (IIoT) is presented. With the help of the Haar wavelet technique, the considered problem is transformed into a system of algebraic equations which is then solved for the required results by using Gauss elimination algorithm. Some numerical examples for convergence of the proposed technique are taken from the literature. Maximum absolute and root mean square errors are calculated for various collocation points. The results show that the Haar wavelet method is an effective method for solving delay differential equations of second order. The convergence rate is also measured for various collocation points, which is almost equal to 2.


1996 ◽  
Vol 48 (4) ◽  
pp. 871-886 ◽  
Author(s):  
Horng-Jaan Li ◽  
Wei-Ling Liu

AbstractSome oscillation criteria are given for the second order neutral delay differential equationwhere τ and σ are nonnegative constants, . These results generalize and improve some known results about both neutral and delay differential equations.


Sign in / Sign up

Export Citation Format

Share Document