scholarly journals Cadmium Sulfide Thin Films Deposited onto MWCNT/Polysulfone Substrates by Chemical Bath Deposition

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
M. Moreno ◽  
G. M. Alonzo-Medina ◽  
A. I. Oliva ◽  
A. I. Oliva-Avilés

Cadmium sulfide (CdS) thin films were deposited by chemical bath deposition (CBD) onto polymeric composites with electric field-aligned multiwall carbon nanotubes (MWCNTs). MWCNT/polysulfone composites were prepared by dispersing low concentrations of MWCNTs within dissolved polysulfone (PSF). An alternating current electric field was “in situ” applied to align the MWCNTs within the dissolved polymer along the field direction until the solvent was evaporated. 80 μm thick solid MWCNT/PSF composites with an electrical conductivity 13 orders of magnitude higher than the conductivity of the neat PSF were obtained. The MWCNT/PSF composites were subsequently used as flexible substrates for the deposition of CdS thin films by CBD. Transparent and adherent CdS thin films with an average thickness of 475 nm were obtained. The values of the energy band gap, average grain size, rms roughness, crystalline structure, and preferential orientation of the CdS films deposited onto the polymeric substrate were very similar to the corresponding values of the CdS deposited onto glass (conventional substrate). These results show that the MWCNT/PSF composites with electric field-tailored MWCNTs represent a suitable option to be used as flexible conducting substrate for CdS thin films, which represents an important step towards the developing of flexible systems for photovoltaic applications.

2012 ◽  
Vol 507 ◽  
pp. 101-105 ◽  
Author(s):  
Alejandro Vázquez ◽  
Israel López ◽  
Idalia Gómez

Cadmium sulfide (CdS) and zinc sulfide (ZnS) nanostructures were formed by means of electrophoretic deposition of nanoparticles with mean diameter of 6 nm and 20 nm, respectively. Nanoparticles were prepared by a microwave assisted synthesis in aqueous dispersion and electrophoretically deposited on aluminum plates. CdS thin films and ZnS one-dimensional nanostructures were grown on the negative electrodes after 24 hours of electrophoretic deposition at direct current voltage. CdS and ZnS nanostructures were characterized by means of scanning electron (SEM) and atomic force (AFM) microscopies analysis. CdS thin films homogeneity can be tunable varying the strength of the applied electric field. Deposition at low electric field produces thin films with particles aggregates, whereas deposition at relative high electric field produces smoothed thin films. The one-dimensional nanostructure size can be also controlled by the electric field strength. Two different mechanisms are considered in order to describe the formation of the nanostructures: lyosphere distortion and thinning and subsequent dipole-dipole interactions phenomena are proposed as a possible mechanism of the one-dimensional nanostructures, and a mechanism considering pre-deposition interactions of the CdS nanoparticles is proposed for the CdS thin films formation.


RSC Advances ◽  
2014 ◽  
Vol 4 (84) ◽  
pp. 44547-44554 ◽  
Author(s):  
S. T. Navale ◽  
A. T. Mane ◽  
M. A. Chougule ◽  
N. M. Shinde ◽  
JunHo Kim ◽  
...  

We demonstrate the preparation of cadmium sulfide (CdS) thin films via a facile chemical bath deposition method.


2021 ◽  
Vol 21 (12) ◽  
pp. 6035-6040
Author(s):  
Sucheta Sengupta ◽  
Avshish Kumar ◽  
V. K. Jain

Cadmium sulfide (CdS), an II–VI group semiconductor material, is one of the most investigated semiconductors in thin film form. In this work, we synthesized CdS thin films with improved film morphology in the presence of ethylene diamine (EA) as the complexing agent by chemical bath deposition (CD) at lower pH. Detailed characterization reveals the presence of cubic phase CdS with a band gap of 2.39 eV with the resultant morphology significantly influenced by the composition of the growth solution. The resultant CdS films finds prospective application as a humidity sensor with a high sensor response of 2.61 corresponding to 80% relative humidity.


2019 ◽  
Vol 682 ◽  
pp. 142-146 ◽  
Author(s):  
R. Garza-Hernández ◽  
A. Carrillo-Castillo ◽  
V.H. Martínez-Landeros ◽  
M.A. Martínez-Puente ◽  
E. Martínez-Guerra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document