scholarly journals Doxycycline Inhibits IL-17-Stimulated MMP-9 Expression by Downregulating ERK1/2 Activation: Implications in Myogenic Differentiation

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hristina Obradović ◽  
Jelena Krstić ◽  
Tamara Kukolj ◽  
Drenka Trivanović ◽  
Ivana Okić Đorđević ◽  
...  

Interleukin 17 (IL-17) is a cytokine with pleiotropic effects associated with several inflammatory diseases. Although elevated levels of IL-17 have been described in inflammatory myopathies, its role in muscle remodeling and regeneration is still unknown. Excessive extracellular matrix degradation in skeletal muscle is an important pathological consequence of many diseases involving muscle wasting. In this study, the role of IL-17 on the expression of matrix metalloproteinase- (MMP-) 9 in myoblast cells was investigated. The expression of MMP-9 after IL-17 treatment was analyzed in mouse myoblasts C2C12 cell line. The increase in MMP-9 production by IL-17 was concomitant with its capacity to inhibit myogenic differentiation of C2C12 cells. Doxycycline (Doxy) treatment protected the myogenic capacity of myoblasts from IL-17 inhibition and, moreover, increased myotubes hypertrophy. Doxy blocked the capacity of IL-17 to stimulate MMP-9 production by regulating IL-17-induced ERK1/2 MAPK activation. Our results imply that MMP-9 mediates IL-17’s capacity to inhibit myoblast differentiation during inflammatory diseases and indicate that Doxy can modulate myoblast response to inflammatory induction by IL-17.

Author(s):  
Hyunju Liu ◽  
Su-Mi Lee ◽  
Hosouk Joung

AbstractSUMOylation is one of the post-translational modifications that involves the covalent attachment of the small ubiquitin-like modifier (SUMO) to the substrate. SUMOylation regulates multiple biological processes, including myoblast proliferation, differentiation, and apoptosis. 2-D08 is a synthetically available flavone, which acts as a potent cell-permeable SUMOylation inhibitor. Its mechanism of action involves preventing the transfer of SUMO from the E2 thioester to the substrate without influencing SUMO-activating enzyme E1 (SAE-1/2) or E2 Ubc9-SUMO thioester formation. However, both the effects and mechanisms of 2-D08 on C2C12 myoblast cells remain unclear. In the present study, we found that treatment with 2-D08 inhibits C2C12 cell proliferation and differentiation. We confirmed that 2-D08 significantly hampers the viability of C2C12 cells. Additionally, it inhibited myogenic differentiation, decreasing myosin heavy chain (MHC), MyoD, and myogenin expression. Furthermore, we confirmed that 2-D08-mediated anti-myogenic effects impair myoblast differentiation and myotube formation, reducing the number of MHC-positive C2C12 cells. In addition, we found that 2-D08 induces the activation of ErK1/2 and the degradation of MyoD and myogenin in C2C12 cells. Taken together, these results indicated that 2-D08 treatment results in the deregulated proliferation and differentiation of myoblasts. However, further research is needed to investigate the long-term effects of 2-D08 on skeletal muscles.


Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 332 ◽  
Author(s):  
Kim ◽  
Ahmad ◽  
Shaikh ◽  
Jan ◽  
Seo ◽  
...  

Dermatopontin (DPT) is an extensively distributed non-collagenous component of the extracellular matrix predominantly found in the dermis of the skin, and consequently expressed in several tissues. In this study, we explored the role of DPT in myogenesis and perceived that it enhances the cell adhesion, reduces the cell proliferation and promotes the myoblast differentiation in C2C12 cells. Our results reveal an inhibitory effect with fibronectin (FN) in myoblast differentiation. We also observed that DPT and fibromodulin (FMOD) regulate positively to each other and promote myogenic differentiation. We further predicted the 3D structure of DPT, which is as yet unknown, and validated it using state-of-the-art in silico tools. Furthermore, we explored the in-silico protein-protein interaction between DPT-FMOD, DPT-FN, and FMOD-FN, and perceived that the interaction between FMOD-FN is more robust than DPT-FMOD and DPT-FN. Taken together, our findings have determined the role of DPT at different stages of the myogenic process.


2017 ◽  
Vol 43 (3) ◽  
pp. 1100-1112 ◽  
Author(s):  
Suifeng Liu ◽  
Feng Gao ◽  
Lei Wen ◽  
Min Ouyang ◽  
Yi Wang ◽  
...  

Background/Aims: Sarcopenia is characterized by an age-related decline in skeletal muscle plus low muscle strength and/or physical performance. Despite the clinical significance of sarcopenia, the molecular pathways underlying sarcopenia remain elusive. The recent demonstration that undercarboxylated osteocalcin (ucOC) favours muscle function related to insulin sensitivity and glucose metabolism raises the question of whether this hormone may also regulate muscle mass. The present study explored the promotive effects of ucOC in proliferation and differentiation processes of C2C12 myoblasts as well as the possible signalling pathways involved. Methods: The effects of exogenous ucOC on C2C12 myoblasts proliferation were assessed using CCK8 and immunohistological staining assays. C2C12 cells were pretreated with PI3K/Akt or P38 MAPK inhibitors to investigate the possible involvement of the PI3K/Akt and P38 MAPK pathways in proliferation. The levels of Akt, phosphorylated-Akt (p-Akt), P38, and phosphorylated-P38 (p-P38) were measured by Western Blotting. The effects of ucOC on myoblast differentiation were quantified by morphological analysis. A silencing experiment was conducted in which the expression of GPRC6A in C2C12 myoblasts was modified. The expression of GPRC6A, myosin heavy chain (MyHC) and the related ERK1/2 signalling pathway in C2C12 myoblasts were monitored by qRT-PCR and Western Blotting. Results: We showed that treatment with exogenous ucOC stimulated the priming of C2C12 myoblasts proliferation. Inhibition of Akt phosphorylation by wortmannin or inhibition of P38 MAPK phosphorylation by SB203580 decreased C2C12 cell proliferation. Wortmannin also reduced P38 MAPK phosphorylation, whereas SB203580 did not affect Akt activation. Furthermore, ucOC promoted C2C12 myoblast differentiation. Inhibition of ERK1/2 phosphorylation with U0126 decreased C2C12 cell differentiation. Finally, GPRC6A expression was substantially increased after ucOC treatment of C2C12 cells. GPRC6A silencing inhibited Akt, P38 MAPK phosphorylation in C2C12 cells, and ERK1/2 phosphorylation in C2C12 myotubes; GPRC6A silencing also decreased cell proliferation, decreased cell differentiation, and downregulated MyHC expression. Conclusions: The present data suggest that ucOC induces myoblast proliferation via sequential activation of the PI3K/Akt and p38 MAPK pathways in C2C12 myoblast cells. Moreover, ucOC enhances myogenic differentiation via a mechanism involving GPRC6A-ERK1/2 signalling.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Xuedong Kang ◽  
Yan Zhao ◽  
Marlin Touma

Introduction: Long noncoding RNAs (lncRNAs), emerged as critical epigenetic regulators of transcriptome, play important roles in cardiac development and might be targeted to treat human cardiomyocyte dysfunction. In our work, we identified a novel lncRNA that regulates myogenesis. Hypothesis: LncRNA Ppp1r1b regulates myogenesis by modulating Histone 3 methylation Methods: After treated with antisense oligonucleotides (GapmeR) or siRNA against Ppp1r1b-LncRNA, real time PCR and Western blot analyses were performed to examine the expression of myogenic and sarcomere genes. Chromatin immunoprecipitation (CHIP) was used to comparatively analyze gene specific histone modification level. RNA pull-down was employed to identify the protein molecules that interact with Ppp1r1b-LncRNA. Results: By silencing Ppp1r1b-LncRNA with GapmeR, C2C12, a skeletal myoblast cell line, did not develop fully differentiated myotubes, but tend to remain in a quiescent mono-nucleated status. In vivo analysis of GapmeR injected neonatal mouse heart and in vitro siRNA silenced human skeletal myoblasts further confirmed the important role of Ppp1r1b-LncRNA on myogenesis. Members of the MyoD family of muscle-specific transcription factors (MyoD and myogenin) failed to be up-regulated during myogenic differentiation when treated with Ppp1r1b-LncRNA specific GapmeR or siRNA. Key proteins essential for establishing and maintaining normal skeletal muscle architecture, including Tcap and Dystropnin, are also suppressed in Ppp1r1b LncRNA- deficient heart. Analysis of histone modification levels at Myogenin, MyoD1 and Tcap in C2C12 cells revealed more histone tri-methylation at these myogenic and sarcomere structural genes compared to untreated cells. Additional lncRNA- protein complex isolation has further revealed insight into the biological roles of Ppp1r1b-LncRNA. Conclusions: Our results support the role of Ppp1r1b-LncRNA in promoting myogenic differentiation. Ppp1r1b-lncRNA function is mediated by inhibiting histone methylation on promoters of multiple myogenic and sarcomere genes. In particular, the identification of EZH2 in pulled Pp1r1b LncRNA: protein complex implies that Polycomb repressive complex 2 (PRC2) is involved in Ppp1r1b-LncRNA modulated myoblast differentiation.


2004 ◽  
Vol 15 (4) ◽  
pp. 2013-2026 ◽  
Author(s):  
Bernat Baeza-Raja ◽  
Pura Muñoz-Cánoves

p38 MAPK and nuclear factor-κB (NF-κB) signaling pathways have been implicated in the control of skeletal myogenesis. However, although p38 is recognized as a potent activator of myoblast differentiation, the role of NF-κB remains controversial. Here, we show that p38 is activated only in differentiating myocytes, whereas NF-κB activity is present both in proliferation and differentiation stages. NF-κB activation was found to be dependent on p38 activity during differentiation, being NF-κB an effector of p38, thus providing a novel mechanism for the promyogenic effect of p38. Activation of p38 in C2C12 cells induced the activity of NF-κB, in a dual way: first, by reducing IκBα levels and inducing NF-κB-DNA binding activity and, second, by potentiating the transactivating activity of p65-NF-κB. Finally, we show that interleukin (IL)-6 expression is induced in C2C12 differentiating myoblasts, in a p38- and NF-κB-dependent manner. Interference of IL-6 mRNA reduced, whereas its overexpression increased, the extent of myogenic differentiation; moreover, addition of IL-6 was able to rescue significantly the negative effect of NF-κB inhibition on this process. This study provides the first evidence of a crosstalk between p38 MAPK and NF-κB signaling pathways during myogenesis, with IL-6 being one of the effectors of this promyogenic mechanism.


2020 ◽  
Vol 74 (1) ◽  
pp. 18-33
Author(s):  
Irina Maslovaric ◽  
Vesna Ilic ◽  
Ana Stancic ◽  
Juan Santibanez ◽  
Drenka Trivanovic ◽  
...  

Introduction. Blood products, i.e. platelet rich plasma (PRP), leukocyte-poor plasma (PRP) and platelet poor plasma (PPP), have previously been used to improve muscle regeneration. In this study, six months? frozen-stored PPP of individuals who practiced different types of physical exercise was analysed; it could steer mouse C2C12 myoblast cells towards proliferation, migration and myogenic differentiation, and it could affect the morphology/shape of myotubes. Materials and Methods. PPP of male Olympic weightlifters, football players and professional folk dancers, aged 15-19, was collected 12 h post-training and stored for 6 months at -20?C. C2C12 cell proliferation was assessed by MTT test, motility by scratch assay, myogenic differentiation by myotube formation and gelatinase activity by gel-zymography. Results and Conclusions. PPP induced proliferation and migration of C2C12 cells. Proliferative capacity was as follows: weightlifters > dancers > football players; mean migratory capacity was: weightlifters = dancers > football players. PPP induced formation of myotubes; significant inter-individual variations were detected: PPP from weightlifters induced formation of round myotubes, and PPP from football players and dancers induced formation of elongated myotubes. The mean myotube area was as follows: football players > dancers > weightlifters. PPP gelatinolytic activity was observed; it was negatively correlated with C2C12 myoblast proliferation. These results provide general but distinct evidence that PPP of individuals practicing certain types of exercise can specifically modify myoblast morphology/function. This is significant for explaining physiological responses and adaptations to exercise. In conclusion, long-term, frozen-stored PPP preserves its potential to modify myoblast morphology and function.


2014 ◽  
Vol 9 (11) ◽  
pp. 1030-1036 ◽  
Author(s):  
Yaqiu Lin ◽  
Yanying Zhao ◽  
Ruiwen Li ◽  
Jiaqi Gong ◽  
Yucai Zheng ◽  
...  

AbstractPGC-1α has been implicated as an important mediator of functional capacity of skeletal muscle. However, the role of PGC-1α in myoblast differentiation remains unexplored. In the present study, we observed a significant up-regulation of PGC-1α expression during the differentiation of murine C2C12 myoblast. To understand the biological significance of PGC-1α up-regulation in myoblast differentiation, C2C12 cells were transfected with murine PGC-1α cDNA and siRNA targeting PGC-1α, respectively. PGC-1α over-expressing clones fused to form typical myotubes with higher mRNA level of myosin heavy chain isoform I (MyHCI) and lower MyHCIIX. No obvious differentiation was observed in PGC-1α-targeted siRNA-transfected cells with marked decrement of mRNA levels of MyHCI and MyHCIIX. Furthermore, PGC-1α increased the expression of MyoD and MyoG in C2C12 cells, which controlled the commitment of precursor cells to myotubes. These results indicate that PGC-1α is associated with myoblast differentiation and elevates MyoD and MyoG expression levels in C2C12 cells.


2021 ◽  
pp. 239719832110394
Author(s):  
Silvia Bellando-Randone ◽  
Emanuel Della-Torre ◽  
Andra Balanescu

Systemic sclerosis is characterized by widespread fibrosis of the skin and internal organs, vascular impairment, and dysregulation of innate and adaptive immune system. Growing evidence indicates that T-cell proliferation and cytokine secretion play a major role in the initiation of systemic sclerosis, but the role of T helper 17 cells and of interleukin-17 cytokines in the development and progression of the disease remains controversial. In particular, an equally distributed body of literature supports both pro-fibrotic and anti-fibrotic effects of interleukin-17, suggesting a complex and nuanced role of this cytokine in systemic sclerosis pathogenesis that may vary depending on disease stage, target cells in affected organs, and inflammatory milieu. Although interleukin-17 already represents an established therapeutic target for several immune-mediated inflammatory diseases, more robust experimental evidence is required to clarify whether it may become an attractive therapeutic target for systemic sclerosis as well.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ning Qu ◽  
Mingli Xu ◽  
Izuru Mizoguchi ◽  
Jun-ichi Furusawa ◽  
Kotaro Kaneko ◽  
...  

T-helper 17 (Th17) cells are characterized by producing interleukin-17 (IL-17, also called IL-17A), IL-17F, IL-21, and IL-22 and potentially TNF-α and IL-6 upon certain stimulation. IL-23, which promotes Th17 cell development, as well as IL-17 and IL-22 produced by the Th17 cells plays essential roles in various inflammatory diseases, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, colitis, and Concanavalin A-induced hepatitis. In this review, we summarize the characteristics of the functional role of Th17 cells, with particular focus on the Th17 cell-related cytokines such as IL-17, IL-22, and IL-23, in mouse models and human inflammatory diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Nurhazirah Zainul Azlan ◽  
Yasmin Anum Mohd Yusof ◽  
Ekram Alias ◽  
Suzana Makpol

Sarcopenia is characterized by the loss of muscle mass, strength, and function with ageing. With increasing life expectancy, greater attention has been given to counteracting the effects of sarcopenia on the growing elderly population. Chlorella vulgaris, a microscopic, unicellular, green alga with the potential for various pharmaceutical uses, has been widely studied in this context. This study is aimed at determining the effects of C. vulgaris on promoting muscle regeneration by evaluating myoblast regenerative capacity in vitro. Human skeletal myoblast cells were cultured and underwent serial passaging into young and senescent phases and were then treated with C. vulgaris, followed by the induction of differentiation. The ability of C. vulgaris to promote myoblast differentiation was analysed through cellular morphology, real-time monitoring, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation, myogenin expression, and cell cycle profiling. The results obtained showed that senescent myoblasts exhibited an enlarged and flattened morphology, with increased SA-β-gal expression, reduced myogenic differentiation, decreased expression of myogenin, and an increased percentage of cells in the G0/G1 phase. Treatment with C. vulgaris resulted in decreased SA-β-gal expression and promotion of myogenic differentiation, as observed via an increased fusion index, maturation index, myotube size, and surface area and an increased percentage of cells that stained positive for myogenin. In conclusion, C. vulgaris improves the regenerative capacity of young and senescent myoblasts and promotes myoblast differentiation, indicating its potential to promote muscle regeneration.


Sign in / Sign up

Export Citation Format

Share Document