scholarly journals Changes in IL-2 and IL-10 during Chronic Administration of Isoniazid, Nevirapine, and Paracetamol in Rats

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Zanelle Bekker ◽  
Andrew Walubo ◽  
Jan B. Du Plessis

The aim of this study was to illustrate the initial subclinical drug-induced liver injury and the associated adaptive immune response by monitoring for the changes in plasma IL-2, IL-10, and some cytochrome P450 activity during chronic administration of nevirapine (NVP), isoniazid (INH), and paracetamol (PAR) in rats without clinical hepatotoxicity. Male Sprague-Dawley (SD) rats were divided into four groups (saline (S), NVP, INH, and PAR) of 25 animals each. The drugs were administered daily for 42 days at therapeutic doses (NVP 200 mg/kg, PAR 500 mg/kg, and INH 20 mg/kg) to the respective groups by oral gavage and five rats per group were sacrificed weekly. All the three drugs induced a subclinical liver injury in the first 2-3 weeks followed by healing, indicating adaption. The liver injury was pathologically similar and was associated with immune stimulation and increased cytochrome P450 activity. NVP- and PAR-induced liver injury lasted up to 14 days while that for INH lasted for 28 days. NVP-induced liver injury was associated with increased IL-2, CD4 count, and CYP3A2 activity, followed by increased IL-10 during the healing phase. In conclusion, the initial drug-induced subclinical liver injury, its spontaneous healing, and the associated adaptive immune response have been demonstrated.

2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Mary Jane Masson ◽  
Christine J. Chung ◽  
Richard Peterson ◽  
Mary L. Graf ◽  
Jeffrey L Ambroso ◽  
...  

2021 ◽  
Vol 22 (6) ◽  
pp. 2954
Author(s):  
Alison Jee ◽  
Samantha Christine Sernoskie ◽  
Jack Uetrecht

Idiosyncratic drug-induced liver injury (IDILI) remains a significant problem for patients and drug development. The idiosyncratic nature of IDILI makes mechanistic studies difficult, and little is known of its pathogenesis for certain. Circumstantial evidence suggests that most, but not all, IDILI is caused by reactive metabolites of drugs that are bioactivated by cytochromes P450 and other enzymes in the liver. Additionally, there is overwhelming evidence that most IDILI is mediated by the adaptive immune system; one example being the association of IDILI caused by specific drugs with specific human leukocyte antigen (HLA) haplotypes, and this may in part explain the idiosyncratic nature of these reactions. The T cell receptor repertoire likely also contributes to the idiosyncratic nature. Although most of the liver injury is likely mediated by the adaptive immune system, specifically cytotoxic CD8+ T cells, adaptive immune activation first requires an innate immune response to activate antigen presenting cells and produce cytokines required for T cell proliferation. This innate response is likely caused by either a reactive metabolite or some form of cell stress that is clinically silent but not idiosyncratic. If this is true it would make it possible to study the early steps in the immune response that in some patients can lead to IDILI. Other hypotheses have been proposed, such as mitochondrial injury, inhibition of the bile salt export pump, unfolded protein response, and oxidative stress although, in most cases, it is likely that they are also involved in the initiation of an immune response rather than representing a completely separate mechanism. Using the clinical manifestations of liver injury from a number of examples of IDILI-associated drugs, this review aims to summarize and illustrate these mechanistic hypotheses.


2003 ◽  
Vol 22 (2) ◽  
pp. 65-71 ◽  
Author(s):  
Margarita Kataropoulou ◽  
Catherine Henderson ◽  
Helen Grant

The use of primary hepatocyte cultures as in vitro models for studying xenobiotic metabolism and toxicity is limited by the loss of liver-specific differentiated functions with time in culture and the inability of the cells to proliferate. The aim of this study was to investigate the effect of incorporating 20% chondroitin-6-sulphate (Ch6SO4), a glycosaminoglycan (GAG), into collagen gels (0.3% w/v) and crosslinking the gels with either 1-ethyl-3-(3-di methylaminopropyl) carbodiimide (EDAC) or 1,6-diaminohexane (DAH) on the expression of glutathione-Stransferases (GSTs) and the activity of cytochrome P450 in hepatocytes cultured for 48 hours and 7 days. Hepatocytes were isolated from male Sprague–Dawley rats by collagenase perfusion. Cell homogenates were immunoblotted against class α and π GST subunits. To measure cytochrome P450 activity, testosterone hydroxylation was assessed. Viability of the cultured cells was assessed by confocal laser scanning microscopy using the vital stain carboxyfluorescein diacetate (CFDA). Cells cultured on gels crosslinked with EDAC were dead by 48 hours as judged by lack of CFDA-derived fluorescence and absence of GST bands on the immunoblots. The viability and morphology of the cells were unaffected by any of the other components of the substrata tested. Expression of GSTs indicated that the hepatocyte phenotype was stable for at least 48 hours. The addition of GAG did not improve the phenotype at either 48 hours or 7 days in culture, but the combination of GAG and DAH crosslinking improved GST expression in the 7-day cultures. However, the hepatocyte cytochrome P450 activity did not show any improvement on any of the gels. The combination of GAG and DAH crosslinking provided the most stable substratum environment in terms of GST expression in hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document