scholarly journals Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
C. Dhanapal ◽  
J. Kamalakkannan ◽  
J. Prakash ◽  
M. Kothandapani

This paper analyzes the peristaltic flow of an incompressible micropolar nanofluid in a tapered asymmetric channel in the presence of thermal radiation and heat sources parameters. The rotation of the nanoparticles is incorporated in the flow model. The equations governing the nanofluid flow are modeled and exact solutions are managed under long wavelength and flow Reynolds number and long wavelength approximations. Explicit expressions of axial velocity, stream function, microrotation, nanoparticle temperature, and concentration have been derived. The phenomena of shear stress and trapping have also been discussed. Finally, the influences of various parameters of interest on flow variables have been discussed numerically and explained graphically. Besides, the results obtained in this paper will be helpful to those who are working on the development of various realms like fluid mechanics, the rotation, Brownian motion, thermophoresis, coupling number, micropolar parameter, and the nondimensional geometry parameters.

2021 ◽  
Vol 25 ◽  
pp. 100867
Author(s):  
Saif Ur Rehman ◽  
Amna Mariam ◽  
Asmat Ullah ◽  
Muhammad Imran Asjad ◽  
Mohd Yazid Bajuri ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4529 ◽  
Author(s):  
Sumera Dero ◽  
Azizah Mohd Rohni ◽  
Azizan Saaban ◽  
Ilyas Khan ◽  
Asiful H. Seikh ◽  
...  

The purpose of the present paper is to investigate the micropolar nanofluid flow on permeable stretching and shrinking surfaces with the velocity, thermal and concentration slip effects. Furthermore, the thermal radiation effect has also been considered. Boundary layer momentum, angular velocity, heat and mass transfer equations are converted to non-linear ordinary differential equations (ODEs). Then, the obtained ODEs are solved by applying the shooting method and in the results, the dual solutions are obtained in the certain ranges of pertinent parameters in both cases of shrinking and stretching surfaces. Due to the presence of the dual solutions, stability analysis is done and it was found that the first solution is stable and physically feasible. The results are also compared with previously published literature and found to be in excellent agreement. Moreover, the obtained results reveal the angular velocity increases in the first solution when the value of micropolar parameter increases. The velocity of nanofluid flow decreases in the first solution as the velocity slip parameter increases, whereas the temperature profiles increase in both solutions when thermal radiation, Brownian motion and the thermophoresis parameters are increased. Concentration profile increases by increasing N t and decreases by increasing N b .


2020 ◽  
Vol 17 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Mohamed Almakki ◽  
Hiranmoy Mondal ◽  
Precious Sibanda

Purpose This paper aims to investigate entropy generation in an incompressible magneto-micropolar nanofluid flow over a nonlinear stretching sheet. The flow is subjected to thermal radiation and viscous dissipation. The energy equation is extended by considering the impact of the Joule heating term because of an imposed magnetic field. Design/methodology/approach The flow, heat and mass transfer model are solved numerically using the spectral quasilinearization method. An analysis of the performance of this method is given. Findings It is found that the method is robust, converges fast and gives good accuracy. In terms of the physically significant results, the authors show that the irreversibility caused by the thermal diffusion the dominants other sources of entropy generation and the surface contributes significantly to the total irreversibility. Originality/value The flow is subjected to a combination of a buoyancy force, viscous dissipation, Joule heating and thermal radiation. The flow equations are solved numerically using the spectral quasiliearization method. The impact of a range of physical and chemical parameters on entropy generation, velocity, angular velocity, temperature and concentration profiles are determined. The current results may help in industrial applicants. The present problem has not been considered elsewhere.


2020 ◽  
Vol 64 ◽  
pp. 75-91 ◽  
Author(s):  
Nur Syahirah Wahid ◽  
Norihan Md Arifin ◽  
Mustafa Turkyilmazoglu ◽  
Mohd Ezad Hafidz Hafidzuddin ◽  
Nor Aliza Abd Rahmin

The influence of velocity slip and thermal radiation effects on the magnetohydrodynamic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet is reported in this paper. The similarity transformation is adopted to reduce the partial differential equations to the ordinary differential equations. Exact analytical method is implemented to solve the problem. Maple program is used to facilitate the calculation process. The new additional effects which are the velocity slip and thermal radiation effects are considered towards the model to scrutinize the impacts. The effects of various parameters towards the velocity and temperature profiles are demonstrated through graphs, meanwhile the skin friction coefficient and the local Nusselt number are exhibited through the tabulation of data. The existence of velocity slip reduced the velocity profile but enhanced the temperature profile. The thermal radiation effect has increased the temperature profile. The heat transfer rate are enhanced for the case of hybrid nanofluid compared to the mono nanofluid.


Sign in / Sign up

Export Citation Format

Share Document