scholarly journals Fermions Tunneling from Higher-Dimensional Reissner-Nordström Black Hole: Semiclassical and Beyond Semiclassical Approximation

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
ShuZheng Yang ◽  
Dan Wen ◽  
Kai Lin

Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordström black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordström black hole space-time. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.

2019 ◽  
Vol 34 (29) ◽  
pp. 1950242
Author(s):  
Ding-Qun Chao ◽  
Shu-Zheng Yang ◽  
Zhong-Wen Feng

In this paper, we derived Hamilton–Jacobi equation for spin 1/2 and 3/2 fermions from Dirac equation and Rarita–Schwinger equation. Then, by using the Hamilton–Jacobi equation and general tortoise coordinate transformation, the tunneling rate and Hawking temperatures of a nonstationary axisymmetric symmetry black hole are investigated. The result shows that the tunneling rate, temperature and surface gravity are all related to the properties of horizons of the black hole, the cosmological constant [Formula: see text], the charge [Formula: see text], mass of black hole [Formula: see text] and the Eddington time [Formula: see text].


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jin Pu ◽  
Kai Lin ◽  
Xiao-Tao Zu ◽  
Shu-Zheng Yang

In this paper, by applying the deformed dispersion relation in quantum gravity theory, we study the correction of fermions’ tunneling radiation from nonstationary symmetric black holes. Firstly, the motion equation of fermions is modified in the gravitational space-time. Based on the motion equation, the modified Hamilton-Jacobi equation has been obtained by a semiclassical approximation method. Then, the tunneling behavior of fermions at the event horizon of nonstationary symmetric Kerr black hole is investigated. Finally, the results show that, in the nonstationary symmetric background, the correction of Hawking temperature and the tunneling rate are closely related to the angular parameters of the horizon of the black hole background.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2019 ◽  
Vol 35 (10) ◽  
pp. 2050061
Author(s):  
Z. Luo ◽  
X. G. Lan

It is suggested that the dispersion relation might be corrected at higher energy scales and lead to the deformed Hamilton–Jacobi equation. In this paper, we use the correction to investigate the fermion tunneling radiation for Demianski–Newman black hole spacetime, and the result shows that the corresponding Hawking temperature and the black hole entropy are related to the angular parameters of the black hole coordinates.


2013 ◽  
Vol 23 ◽  
pp. 271-275 ◽  
Author(s):  
M. SHARIF ◽  
WAJIHA JAVED

This paper is devoted to investigate the Hawking radiation as a tunneling phenomenon from the Reissner-Nordström-de Sitter black hole with a global monopole. We use the semiclassical WKB approximation to the general covariant charged Dirac equation and evaluate tunneling probability as well as Hawking temperature. We also study the back reaction effects of the emitted spin particles and Bekenstein-Hawking entropy corrections of fermions tunneling through horizon.


2009 ◽  
Vol 24 (20) ◽  
pp. 1605-1615 ◽  
Author(s):  
XIAOXIONG ZENG

The fermions tunneling formulism of Kerner and Mann is extended to the case of black holes with electric and magnetic charges. As the electric and magnetic fields would couple with gravity field, we introduce the Dirac equation of charged and magnetized particles. We study the spin-up particles from the Reissner–Nordström black hole with magnetic charges and spin-down particles from the Kerr–Newman–Kasuya black hole and obtain the corresponding emission temperatures. In particular, we also provide a simplified method by defining an equivalent charge and gauge potential to further discuss tunneling of charged and magnetized fermions, which reproduces the same results as obtained above.


2009 ◽  
Vol 24 (22) ◽  
pp. 1775-1783 ◽  
Author(s):  
LIN KAI ◽  
YANG SHUZHENG

In this paper, we research on the scalar field particles and 1/2 spin fermions tunneling from the event horizon of Bardeen–Vaidya black hole by semiclassical method and general tortoise coordinate transformation, and obtain the Hawking temperature and tunneling rate near the event horizon.


2020 ◽  
pp. 2150008
Author(s):  
Z. Luo ◽  
W. F. Nie ◽  
Y. Y. Feng ◽  
X. G. Lan

Based on a higher energy scale, the dispersion relation might be corrected. Correspondingly, the Hamilton–Jacobi equation should also be modified. In this paper, we use the correction to study the fermion tunneling radiation for a Gibbons–Maeda–Garfinkle-Horowitz–Strominger (GMGHS) black hole, a Kerr–NUT black hole, and an Einstein–Maxwell–Dilaton–Axion (EMDA) black hole. The result shows that compared to the charged GMGHS black hole and the rotating Kerr–NUT black hole, the Hawking temperate and the entropy of the rotating charged EMDA black hole not only are related to the correction parameter [Formula: see text] and particle mass [Formula: see text] but also depend on the angle parameter [Formula: see text] of the black hole coordinates.


2020 ◽  
Vol 35 (30) ◽  
pp. 2050193
Author(s):  
Tao Wang ◽  
Xinxing Wu ◽  
Qun-Chao Ding ◽  
Shu-Zheng Yang

In this paper, the tunneling radiations of spin 1/2 and spin 3/2 fermions from the nonstationary Kerr black hole are investigated. First, according to the Dirac equation and the Rarita–Schwinger equation, the Hamilton–Jacobi equations for spin 1/2 and 3/2 fermions are derived. Then, the tunneling behavior of fermions on the event horizon of the black hole is investigated. Finally, the thermodynamic properties of the nonstationary Kerr black hole are obtained.


Sign in / Sign up

Export Citation Format

Share Document