scholarly journals Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kerstin Spielmann ◽  
Edith Durand ◽  
Karine Marcotte ◽  
Ana Inés Ansaldo

Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244320
Author(s):  
Nasim Maleki ◽  
Edina Szabo ◽  
Lino Becerra ◽  
Eric Moulton ◽  
Steven J. Scrivani ◽  
...  

In some patients, migraine attacks are associated with symptoms of allodynia which can be localized (cephalic) or generalized (extracephalic). Using functional neuroimaging and cutaneous thermal stimulation, we aimed to investigate the differences in brain activation of patients with episodic migraine (n = 19) based on their allodynic status defined by changes between ictal and interictal pain tolerance threshold for each subject at the time of imaging. In this prospective imaging study, differences were found in brain activity between the ictal and interictal visits in the brainstem/pons, thalamus, insula, cerebellum and cingulate cortex. Significant differences were also observed in the pattern of activation along the trigeminal pathway to noxious heat stimuli in no allodynia vs. generalized allodynia in the thalamus and the trigeminal nucleus but there were no activation differences in the trigeminal ganglion. The functional magnetic resonance imaging (fMRI) findings provide direct evidence for the view that in migraine patients who are allodynic during the ictal phase of their attacks, the spinal trigeminal nucleus and posterior thalamus become hyper-responsive (sensitized)–to the extent that they mediate cephalic and extracephalic allodynia, respectively. In addition, descending analgesic systems seem as “switched off” in generalized allodynia.


2016 ◽  
Vol 224 (2) ◽  
pp. 62-70 ◽  
Author(s):  
Thomas Straube

Abstract. Psychotherapy is an effective treatment for most mental disorders, including anxiety disorders. Successful psychotherapy implies new learning experiences and therefore neural alterations. With the increasing availability of functional neuroimaging methods, it has become possible to investigate psychotherapeutically induced neuronal plasticity across the whole brain in controlled studies. However, the detectable effects strongly depend on neuroscientific methods, experimental paradigms, analytical strategies, and sample characteristics. This article summarizes the state of the art, discusses current theoretical and methodological issues, and suggests future directions of the research on the neurobiology of psychotherapy in anxiety disorders.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
A.R Luft ◽  
L Forrester ◽  
F Villagra ◽  
R Macko ◽  
D.F Hanley

2012 ◽  
Vol 24 (9) ◽  
pp. 1867-1883 ◽  
Author(s):  
Bradley R. Buchsbaum ◽  
Sabrina Lemire-Rodger ◽  
Candice Fang ◽  
Hervé Abdi

When we have a rich and vivid memory for a past experience, it often feels like we are transported back in time to witness once again this event. Indeed, a perfect memory would exactly mimic the experiential quality of direct sensory perception. We used fMRI and multivoxel pattern analysis to map and quantify the similarity between patterns of activation evoked by direct perception of a diverse set of short video clips and the vivid remembering, with closed eyes, of these clips. We found that the patterns of distributed brain activation during vivid memory mimicked the patterns evoked during sensory perception. Using whole-brain patterns of activation evoked by perception of the videos, we were able to accurately classify brain patterns that were elicited when participants tried to vividly recall those same videos. A discriminant analysis of the activation patterns associated with each video revealed a high degree (explaining over 80% of the variance) of shared representational similarity between perception and memory. These results show that complex, multifeatured memory involves a partial reinstatement of the whole pattern of brain activity that is evoked during initial perception of the stimulus.


NeuroImage ◽  
2003 ◽  
Vol 18 (2) ◽  
pp. 448-459 ◽  
Author(s):  
Andrew C Papanicolaou ◽  
Eduardo Castillo ◽  
Joshua I Breier ◽  
Robert N Davis ◽  
Panagiotis G Simos ◽  
...  

2008 ◽  
Vol 4 (1) ◽  
pp. 30 ◽  
Author(s):  
Mira Bühler ◽  
Sabine Vollstädt-Klein ◽  
Jane Klemen ◽  
Michael N Smolka

Sign in / Sign up

Export Citation Format

Share Document