scholarly journals Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase

Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lorena Segale ◽  
Lorella Giovannelli ◽  
Paolo Mannina ◽  
Franco Pattarino

In this work alginate and alginate-chitosan beads containing celecoxib solubilized into a self-emulsifying phase were developed in order to obtain a drug delivery system for oral administration, able to delay the drug release in acidic environment and to promote it in the intestinal compartment. The rationale of this work was linked to the desire to improve celecoxib therapeutic effectiveness reducing its gastric adverse effects and to favor its use in the prophylaxis of colon cancer and as adjuvant in the therapy of familial polyposis. The systems were prepared by ionotropic gelation using needles with different diameters (400 and 600 μm). Morphology, particle size, swelling behavior, andin vitrodrug release performance of the beads in aqueous media with different pH were investigated. The experimental results demonstrated that the presence of chitosan in the formulation caused an increase of the mechanical resistance of the bead structure and, as a consequence, a limitation of the bead swelling ability and a decrease of the drug release rate at neutral pH. Alginate-chitosan beads could be a good tool to guarantee a celecoxib colon delivery.

2013 ◽  
Vol 645 ◽  
pp. 125-128
Author(s):  
Wei Zeng

Five ordered mesoporous materials, SBA-1, MCM-48, SBA-7, MCM-41 and SBA-15, were prepared and tested as mesophase drug delivery systems with an anti-inflammatory drug, ibuprofen. The results of these mesostructures on in vitro ibuprofen delivery indicated that the mesoporous materials with cage-like structure, SBA-1 and SBA-7, had unfavorable load and release properties. MCM-48 also showed fast release rate due to its opening channel. However, the hexagonal mesostructure in MCM-41 and SAB-15 was advantageous for extending drug release rate although a little difference existed between them. Compared with commercial ibuprofen capsule, the release system based on MCM-41 materials displayed the drug efficacy in a longer time.


2012 ◽  
Vol 506 ◽  
pp. 533-536
Author(s):  
Nanthida Wonglertnirant ◽  
S. Tipwichai ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Suwannee Panomsuk ◽  
...  

Ketoprofen transdermal patches (KTPs) were fabricated using an acrylic pressure sensitive adhesive (PSA) polymer. The influence of different factors (amount of PSA, drug content, and pressure applying on the backing membrane during preparation) on the characteristics of ketoprofen patch (thickness, W/A ratio, and adhesiveness of matrix film) and in vitro drug release behavior were investigated. The results revealed the successful fabrication and a good physical appearance of KTPs using acrylic PSA. Microscopic observations, FTIR spectra, and DSC thermograms were permitted to demonstrate that the drug was dispersed molecularly in the polymer. As the amount of PSA in the adhesive matrix was increased, the release rate of ketoprofen was decreased. Contrarily, the drug release rate was increased corresponding to the increase of ketoprofen content in the adhesive matrix. There was no significant difference in the release rate when the pressure applying on the backing membrane was varied. The kinetic of ketoprofen release from acrylic matrix type transdermal patches followed the Higuchis diffusion model.


2003 ◽  
Vol 86 (2-3) ◽  
pp. 279-292 ◽  
Author(s):  
Anne Engelbrecht Thomsen ◽  
Gerda Marie Friedrichsen ◽  
Arne Hagsten Sørensen ◽  
Rikke Andersen ◽  
Carsten Uhd Nielsen ◽  
...  

2006 ◽  
Vol 514-516 ◽  
pp. 1015-1019 ◽  
Author(s):  
Rangasamy Jayakumar ◽  
Rui L. Reis ◽  
João F. Mano

N-Carboxymethyl chitosan (NCMC) is a water soluble derivative of chitosan. The NCMC beads were prepared by using ionotropic gelation process with the counter polyanion tripolyphoshate at pH 4.0 and characterized by scanning electron microscopy. The swelling behavior of the beads at different time intervals was monitored at different pH conditions. The in vitro drug release behavior in various pH solutions was studied using indomethacin as a model drug with two different concentrations (0.3 and 0.6% w/w). The release percent of indomethacin from NCMC beads was found to increase with increasing of pH in phosphate buffer solution medium due to the ionization of carboxymethyl group and high solubility of indomethacin in alkaline medium. These results indicated that the NCMC beads are useful for controlled drug delivery systems through oral administration by avoiding the drug release in the highly acidic gastric fluid region of the stomach.


Author(s):  
Sen Liu ◽  
Can Shen ◽  
Cheng Qian ◽  
Jianquan Wang ◽  
Zhihao Wang ◽  
...  

The accumulation of nanotechnology-based drugs has been realized in various ways. However, the concentration of drugs encapsulated by nanomaterials is not equal to the concentration of effective drugs; often, the drugs become effective only when they are released from the nanomaterials as free drugs. This means only when the drugs are rapidly released after the accumulated drug-encapsulating nanomaterials can they truly achieve the purpose of increasing the concentration of drugs in the tumor. Therefore, we herein report a dual-response nano-carrier of glutathione and acid to achieve the rapid release of encapsulated drug and increase the effective drug concentration in the tumor. The nano-carrier was constructed using a dual-responsive amphiphilic copolymer, composed of polyethylene glycol and hydrophobic acetylated dextran and connected by a disulfide bond. In the tumor microenvironment, disulfide bonds could be biodegraded by glutathione that is overexpressed in the tumor, exposing the core of nano-carrier composed of acetylated dextran. Then the acidic environment would induce the deacetylation of acetylated dextran into water-soluble dextran. In this way, the nano-carrier will degrade quickly, realizing the purpose of rapid drug release. The results showed that the drug release rate of dual-responsive nano-carrier was much higher than that of glutathione or acid-responsive nano-carrier alone. Furthermore, both in vitro and in vivo experiments confirmed that dual-responsive nano-carrier possessed more efficient anti-tumor effects. Therefore, we believe that dual-responsive nano-carriers have better clinical application prospects.


Author(s):  
Bijay Kumar Sahoo ◽  
Sidheswar Prasad Pattajoshi ◽  
Sandhyarani Pattajoshi

The aim of present study was to develop colon targeted system for Metronidazole using guar gum and xanthan gum. Tablet matrices containing 10–60% of tablet weight of guar gum (F1–F6) were prepared by direct compression and subjected to in vitro release studies to explore their sustained release in the colon. Various release retarding synthetic and natural polymers, namely, hydrogenated castor oil, hydroxypropyl methyl cellulose, xanthan gum, and ethyl cellulose, Eudragit RL 100, were incorporated to modify the drug release rate from the guar gum matrix tablets. Matrix tablets were enteric coated with hydroxypropyl methyl cellulose phthalate as an enteric polymer. Various synthetic and natural polymers were incorporated to F6 to modify the drug release rate. Different 15 matrix tablet formulations (F6–F20) were enteric coated with hydroxypropyl methyl cellulose phthalate. The in-vitro drug release study was undertaken at 37±0.5°C in 0.1N HCl for 2 h; followed by pH 7.4 phosphate buffer (3h) finally in, simulated colonic fluid pH 6.8 phosphate buffer 20 h. The formulation F6, F13 and F20 showed promising sustained release results having median dissolution time (MDT) values: 8.25, 7.97, and 7.64, respectively. When studies were continued in colonic fluids, matrix tablets released almost 100% drug. whereas, Metronidazole enteric  formulations did not release drug in stomach and small intestine, but delivered drug to the colon resulting in slow absorption of the drug and making drug available for local action in the colon. Keywords:  Colon Target Delivery, Guar gum, Metronidazole, Enteric coated, Tablet Matrices


1989 ◽  
Vol 4 (2) ◽  
pp. 100-104
Author(s):  
Yoshiaki Kawashima ◽  
Taro Iwamoto ◽  
Toshiyuki Niwa ◽  
Hirofumi Takeuchi ◽  
Tomoaki Hino ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 235 ◽  
Author(s):  
Monica Trif ◽  
Dan Vodnar ◽  
Laura Mitrea ◽  
Alexandru Rusu ◽  
Claudia Socol

The aim of this study was to encapsulate the oleoresins rich in carotenoids extracted from sea buckthorn (Hippophae rhamnoides) fruits into a blend of sodium-alginate and κ-carrageenan microbeads (2% w/v) coated by a sodium-alginate (2% w/v) layer prepared using an ionotropic gelation technique with calcium chloride (2% w/v) by dropping method. The fresh obtained coated microbeads had a “fried eggs” like appearance with a size distribution ranging from 4 to 6 mm. The coated microbeads were analyzed for their SEM and fluorescence. The encapsulation efficiency was 92%. Their stability was investigated by evaluation of the physical integrity performance in aqueous media with different pH to mimic the gastrointestinal tract for 24 h at 37 °C under laboratory conditions. The results demonstrated the limitation of the coated microbeads swelling ability under pH 7. The coated microbeads could be a good tool to guarantee oleoresins rich in carotenoids stability and colon delivery. The present study shows an attractive encapsulation system of oleoresins, in order to obtain stable products for further applications.


Sign in / Sign up

Export Citation Format

Share Document