scholarly journals AntStar: Enhancing Optimization Problems by Integrating an Ant System andA⁎Algorithm

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammed Faisal ◽  
Hassan Mathkour ◽  
Mansour Alsulaiman

Recently, nature-inspired techniques have become valuable to many intelligent systems in different fields of technology and science. Among these techniques, Ant Systems (AS) have become a valuable technique for intelligent systems in different fields. AS is a computational system inspired by the foraging behavior of ants and intended to solve practical optimization problems. In this paper, we introduce the AntStar algorithm, which is swarm intelligence based. AntStar enhances the optimization and performance of an AS by integrating the AS andA⁎algorithm. Applying the AntStar algorithm to the single-source shortest-path problem has been done to ensure the efficiency of the proposed AntStar algorithm. The experimental result of the proposed algorithm illustrated the robustness and accuracy of the AntStar algorithm.

1999 ◽  
Vol 09 (PR3) ◽  
pp. Pr3-71-Pr3-76 ◽  
Author(s):  
M. Romero ◽  
V. Fernández ◽  
M. Sánchez

Author(s):  
Achmad Fanany Onnilita Gaffar ◽  
Agusma Wajiansyah ◽  
Supriadi Supriadi

The shortest path problem is one of the optimization problems where the optimization value is a distance. In general, solving the problem of the shortest route search can be done using two methods, namely conventional methods and heuristic methods. The Ant Colony Optimization (ACO) is the one of the optimization algorithm based on heuristic method. ACO is adopted from the behavior of ant colonies which naturally able to find the shortest route on the way from the nest to the food sources. In this study, ACO is used to determine the shortest route from Bumi Senyiur Hotel (origin point) to East Kalimantan Governor's Office (destination point). The selection of the origin and destination points is based on a large number of possible major roads connecting the two points. The data source used is the base map of Samarinda City which is cropped on certain coordinates by using Google Earth app which covers the origin and destination points selected. The data pre-processing is performed on the base map image of the acquisition results to obtain its numerical data. ACO is implemented on the data to obtain the shortest path from the origin and destination point that has been determined. From the study results obtained that the number of ants that have been used has an effect on the increase of possible solutions to optimal. The number of tours effect on the number of pheromones that are left on each edge passed ant. With the global pheromone update on each tour then there is a possibility that the path that has passed the ant will run out of pheromone at the end of the tour. This causes the possibility of inconsistent results when using the number of ants smaller than the number of tours.


2015 ◽  
Vol 11 (1) ◽  
pp. 2897-2908
Author(s):  
Mohammed S.Aljohani

Tomography is a non-invasive, non-intrusive imaging technique allowing the visualization of phase dynamics in industrial and biological processes. This article reviews progress in Electrical Capacitance Volume Tomography (ECVT). ECVT is a direct 3D visualizing technique, unlike three-dimensional imaging, which is based on stacking 2D images to obtain an interpolated 3D image. ECVT has recently matured for real time, non-invasive 3-D monitoring of processes involving materials with strong contrast in dielectric permittivity. In this article, ECVT sensor design, optimization and performance of various sensors seen in literature are summarized. Qualitative Analysis of ECVT image reconstruction techniques has also been presented.


2021 ◽  
pp. 1-14
Author(s):  
Fen Li ◽  
Oscar Sanjuán Martínez ◽  
R.S. Aiswarya

BACKGROUND: The modern Internet of Things (IoT) makes small devices that can sense, process, interact, connect devices, and other sensors ready to understand the environment. IoT technologies and intelligent health apps have multiplied. The main challenges in the sports environment are playing without injuries and healthily. OBJECTIVE: In this paper the Internet of Things-based Smart Wearable System (IoT-SWS) is introduced for monitoring sports person activity to improve sports person health and performance in a healthy way. METHOD: Wearable systems are commonly used to capture individual sports details on a real-time basis. Collecting data from wearable devices and IoT technologies can help organizations learn how to optimize in-game strategies, identify opponents’ vulnerabilities, and make smarter draft choices and trading decisions for a sportsperson. RESULTS: The experimental result shows that IoT-SWS achieve the highest accuracy of 98.22% and efficient in predicting the sports person’s health to improve sports person performance reliably.


SIAM Review ◽  
2009 ◽  
Vol 51 (1) ◽  
pp. 129-159 ◽  
Author(s):  
Kaushik Datta ◽  
Shoaib Kamil ◽  
Samuel Williams ◽  
Leonid Oliker ◽  
John Shalf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document