scholarly journals A Residual-Based Kernel Regression Method for Image Denoising

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Jiefei Wang ◽  
Yupeng Chen ◽  
Tao Li ◽  
Jian Lu ◽  
Lixin Shen

We propose a residual-based method for denoising images corrupted by Gaussian noise. In the method, by combining bilateral filter and structure adaptive kernel filter together with the use of the image residuals, the noise is suppressed efficiently while the fine features, such as edges, of the images are well preserved. Our experimental results show that, in comparison with several traditional filters and state-of-the-art denoising methods, the proposed method can improve the quality of the restored images significantly.

Author(s):  
Pallavi Bora ◽  
Kapil Chaudhary

Image Denoising techniques are widely used to remove the noise from the images. Due to the ease of the bilateral filter, it is used very often to remove the noise from the images. In this paper, a novel approach has been proposed to enhanced bilateral filter in conjunction with CNN as a booster to eliminate Gaussian noise from Grey images. Studies reveal that standard CNN using a bilateral filter is the best technique to eliminate Gaussian noise from images along with high PSNR values. This paper also performs a comparative study of the various existing techniques for image denoising with the CNN technique and the applied Bilateral filter Method as a de facto to improve the results in terms of enhanced PSNR values. ECND Net (Enhanced CNN) applied to noisy images with standard deviation σ = 15 gives PSNR values up to 32.81 In comparison to this when both bilateral filter and deep CNN applied, in conjunction produces improved PSNR values up to 34.73 along with the equivalent standard deviation. The results in this work reveal better performance in terms of PSNR as compared to other methods. The test result proves that the bilateral filter Method along with CNN can improve the quality of restored images significantly better.


2019 ◽  
Vol 9 (13) ◽  
pp. 2684 ◽  
Author(s):  
Hongyang Li ◽  
Lizhuang Liu ◽  
Zhenqi Han ◽  
Dan Zhao

Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour is a kind of non-salient contour, characterized by big intra-class differences and small inter-class differences, meaning that the feature of the contour is not discriminative. The method called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour, which is built based on the HED network and dilated convolution. The experimental results for our dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is 49.99%, achieving state-of-the-art performance.


2017 ◽  
Vol 2 (1) ◽  
pp. 299-316 ◽  
Author(s):  
Cristina Pérez-Benito ◽  
Samuel Morillas ◽  
Cristina Jordán ◽  
J. Alberto Conejero

AbstractIt is still a challenge to improve the efficiency and effectiveness of image denoising and enhancement methods. There exists denoising and enhancement methods that are able to improve visual quality of images. This is usually obtained by removing noise while sharpening details and improving edges contrast. Smoothing refers to the case of denoising when noise follows a Gaussian distribution.Both operations, smoothing noise and sharpening, have an opposite nature. Therefore, there are few approaches that simultaneously respond to both goals. We will review these methods and we will also provide a detailed study of the state-of-the-art methods that attack both problems in colour images, separately.


2020 ◽  
Vol 34 (05) ◽  
pp. 9749-9756
Author(s):  
Junnan Zhu ◽  
Yu Zhou ◽  
Jiajun Zhang ◽  
Haoran Li ◽  
Chengqing Zong ◽  
...  

Multimodal summarization with multimodal output (MSMO) is to generate a multimodal summary for a multimodal news report, which has been proven to effectively improve users' satisfaction. The existing MSMO methods are trained by the target of text modality, leading to the modality-bias problem that ignores the quality of model-selected image during training. To alleviate this problem, we propose a multimodal objective function with the guidance of multimodal reference to use the loss from the summary generation and the image selection. Due to the lack of multimodal reference data, we present two strategies, i.e., ROUGE-ranking and Order-ranking, to construct the multimodal reference by extending the text reference. Meanwhile, to better evaluate multimodal outputs, we propose a novel evaluation metric based on joint multimodal representation, projecting the model output and multimodal reference into a joint semantic space during evaluation. Experimental results have shown that our proposed model achieves the new state-of-the-art on both automatic and manual evaluation metrics. Besides, our proposed evaluation method can effectively improve the correlation with human judgments.


Author(s):  
Ziming Li ◽  
Julia Kiseleva ◽  
Maarten De Rijke

The performance of adversarial dialogue generation models relies on the quality of the reward signal produced by the discriminator. The reward signal from a poor discriminator can be very sparse and unstable, which may lead the generator to fall into a local optimum or to produce nonsense replies. To alleviate the first problem, we first extend a recently proposed adversarial dialogue generation method to an adversarial imitation learning solution. Then, in the framework of adversarial inverse reinforcement learning, we propose a new reward model for dialogue generation that can provide a more accurate and precise reward signal for generator training. We evaluate the performance of the resulting model with automatic metrics and human evaluations in two annotation settings. Our experimental results demonstrate that our model can generate more high-quality responses and achieve higher overall performance than the state-of-the-art.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Lei He ◽  
Yan Xing ◽  
Kangxiong Xia ◽  
Jieqing Tan

In view of the drawback of most image inpainting algorithms by which texture was not prominent, an adaptive inpainting algorithm based on continued fractions was proposed in this paper. In order to restore every damaged point, the information of known pixel points around the damaged point was used to interpolate the intensity of the damaged point. The proposed method included two steps; firstly, Thiele’s rational interpolation combined with the mask image was used to interpolate adaptively the intensities of damaged points to get an initial repaired image, and then Newton-Thiele’s rational interpolation was used to refine the initial repaired image to get a final result. In order to show the superiority of the proposed algorithm, plenty of experiments were tested on damaged images. Subjective evaluation and objective evaluation were used to evaluate the quality of repaired images, and the objective evaluation was comparison of Peak Signal to Noise Ratios (PSNRs). The experimental results showed that the proposed algorithm had better visual effect and higher Peak Signal to Noise Ratio compared with the state-of-the-art methods.


2014 ◽  
Vol 8 (1) ◽  
pp. 37-41
Author(s):  
Zheng Jian Feng ◽  
Huang Chengwei ◽  
Zhang Ji

The edges and textures of a digital image may be destroyed by traditional denoising methods, which is a difficult problem in image denoising. In this paper, anisotropic diffusion algorithm based on Partial differential equation is studied. First, image denoising algorithms based on Perona-Malik model are studied. Second, a modified Perona-Malik model is proposed. In the proposed model, the gradient statistic and edge thresholds are embedded into the Perona-Malik equation. Finally, the effects of this model and some other models are compared and analyzed. The experimental results show that the proposed modified Perona-Malik model outperforms the original Perona-Malik model in removing Gaussian noise, and the edges and textures of the image are well preserved.


Author(s):  
Qunsheng Ruan ◽  
Qingfeng Wu ◽  
Junfeng Yao ◽  
Yingdong Wang ◽  
Hsien-Wei Tseng ◽  
...  

In the intelligently processing of the tongue image, one of the most important tasks is to accurately segment the tongue body from a whole tongue image, and the good quality of tongue body edge processing is of great significance for the relevant tongue feature extraction. To improve the performance of the segmentation model for tongue images, we propose an efficient tongue segmentation model based on U-Net. Three important studies are launched, including optimizing the model’s main network, innovating a new network to specially handle tongue edge cutting and proposing a weighted binary cross-entropy loss function. The purpose of optimizing the tongue image main segmentation network is to make the model recognize the foreground and background features for the tongue image as well as possible. A novel tongue edge segmentation network is used to focus on handling the tongue edge because the edge of the tongue contains a number of important information. Furthermore, the advantageous loss function proposed is to be adopted to enhance the pixel supervision corresponding to tongue images. Moreover, thanks to a lack of tongue image resources on Traditional Chinese Medicine (TCM), some special measures are adopted to augment training samples. Various comparing experiments on two datasets were conducted to verify the performance of the segmentation model. The experimental results indicate that the loss rate of our model converges faster than the others. It is proved that our model has better stability and robustness of segmentation for tongue image from poor environment. The experimental results also indicate that our model outperforms the state-of-the-art ones in aspects of the two most important tongue image segmentation indexes: IoU and Dice. Moreover, experimental results on augmentation samples demonstrate our model have better performances.


2015 ◽  
Vol 531 ◽  
pp. 62-72
Author(s):  
D. Fernàndez-Garcia ◽  
M. Barahona-Palomo ◽  
C.V. Henri ◽  
X. Sanchez-Vila

2014 ◽  
Vol 556-562 ◽  
pp. 4839-4842
Author(s):  
Song Yuan Tang

This paper proposes a method to obtain the optimal filter parameter of the non-local mean (NLM) algorithm. The parameter is assumed to be a function of the variance of the additive white Gaussian noise and is adaptive estimated. The initialization of the variance of the additive white Gaussian noise is estimated by Wiener filter. Then the NLM filter is used to adaptively estimate the noise variance. The image denoising is an iterative computation till the parameter convergence. Experiments show that the proposed method can improve the quality of the denoised images efficiently.


Sign in / Sign up

Export Citation Format

Share Document