scholarly journals Facile Synthesis of High {001} Facets Dominated BiOCl Nanosheets and Their Selective Dye-Sensitized Photocatalytic Activity Induced by Visible Light

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Da Zhang ◽  
Liang Chen ◽  
Chengjing Xiao ◽  
Jing Feng ◽  
Lingmin Liao ◽  
...  

Single-crystal BiOCl nanosheets, with high{001}facets exposed, were synthesized through a facile hydrolysis reaction under general atmospheric pressure, without adding any organic surfactant or agent. The thickness of the BiOCl nanosheets is about 20 nm, and the diameter is arranged from 200 to 400 nm. The structure of the BiOCl nanosheets was characterized by X-ray diffraction, energy disperse X-ray spectrum, transmission electron microscopy, and selective area electron diffraction. Moreover, three different dyes were used as model molecules to test the photocatalytic activity of BiOCl nanosheets under visible light. It was found that the BiOCl nanosheets possess selective photocatalytic behavior as their activity over RhB is much higher than that over MO or MB. Based on the analysis of the experimental results, the potential mechanism was discussed.

NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
H. Letifi ◽  
Y. Litaiem ◽  
D. Dridi ◽  
S. Ammar ◽  
R. Chtourou

In this paper, we have reported a novel photocatalytic study of vanadium-doped SnO2 nanoparticles (SnO2: V NPs) in rhodamine B degradation. These NPs have been prepared with vanadium concentrations varying from 0% to 4% via the coprecipitation method. Structural, morphological, and optical properties of the prepared nanoparticles have been investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and UV-Vis and photoluminescence (PL) spectroscopy. Structural properties showed that both undoped and SnO2: V NPs exhibited the tetragonal structure, and the average crystal size has been decreased from 20 nm to 10 nm with the increasing doping level of vanadium. Optical studies showed that the absorption edge of SnO2: V NPs showed a redshift with the increasing vanadium concentration. This redshift leads to the decrease in the optical band gap from 3.25 eV to 2.55 eV. A quenching in luminescence intensity has been observed in SnO2: V NPs, as compared to the undoped sample. Rhodamine B dye (RhB) has been used to study the photocatalytic degradation of all synthesized NPs. As compared to undoped SnO2 NPs, the photocatalytic activity of SnO2: V NPs has been improved. RhB dye was considerably degraded by 95% within 150 min over on the SnO2: V NPs.


2011 ◽  
Vol 197-198 ◽  
pp. 1028-1031 ◽  
Author(s):  
Mao Lin Zhang ◽  
Long Feng Li ◽  
Xiang Dong Meng

Cu-doped TiO2 photocatalysts were synthesized by a homogeneous hydrolysis and low temperature crystallization method using tetrabutyl titanate as the titanium source and cupric acetate as the doping agent. The phase structure, composition and morphology of the product were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and Brunauer-Emmett-Teller surface area analysis (BET). The XRD results confirmed that the crystalline phase of all prepared samples was anatase-type TiO2. SEM results showed that the Cu-doped TiO2 were composed of spherical particles with particle diameter smaller than 20 nm. Furthermore, the photocatalytic activity of the Cu-doped TiO2 catalysts were evaluated based on the photocatalytic degradation of methyl orange (MO) in aqueous solution. The results showed that Cu-doped TiO2 had the higher visible-light-induced catalytic activity than the commercial P25 TiO2 powder. The copper content in Cu-doped TiO2 had obvious effect on the visible-light-induced catalytic activity, and the degradation rate of MO could reach 33.7% using Cu-doped TiO2 with a doping level of 1.0 mol% Cu as a photocatalyst under the visible light irradiation for 3 hours.


2014 ◽  
Vol 898 ◽  
pp. 23-26
Author(s):  
Jing Li ◽  
Wei Sun ◽  
Wei Min Dai ◽  
Yong Cai Zhang

TiO2/SnS2 nanocomposite was synthesized via hydrothermal treatment of tin (IV) chloride pentahydrate, thioacetamide and TiO2 nanotubes in deionized water at 150 °C for 3 h. The structure, composition and optical property of the as-synthesized nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic property was tested in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation. It was observed that TiO2 nanotubes exhibited no photocatalytic activity, whereas TiO2/SnS2 nanocomposite exhibited photocatalytic activity in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation.


2021 ◽  
Author(s):  
Yu Fan ◽  
Yan-ning Yang ◽  
Chen Ding

Abstract The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis), and photoluminescence (PL) techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50% to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron-hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. The photocatalytic mechanism was proposed through the active matter capture experiment.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


NANO ◽  
2018 ◽  
Vol 13 (03) ◽  
pp. 1850028 ◽  
Author(s):  
Mengjun Liang ◽  
Zhiyuan Yang ◽  
Ying Mei ◽  
Haoran Zhou ◽  
Shuijin Yang

In this study, the TiO2/Bi4V2O[Formula: see text] nanocomposite photocatalysts were prepared by loading different amount of TiO2 nanoparticles onto the surface of Bi4V2O[Formula: see text] nanospheres via a facile hydrothermal method. Afterwards, the as-synthesized samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photocurrent techniques. The optimal TiO2/Bi4V2O[Formula: see text] composite with 20[Formula: see text]wt.% TiO2 loading (TB2) exhibited the best photocatalytic activity, which could degrade almost RhB completely within 30[Formula: see text]min under visible light irradiation. The enhanced photocatalytic activity of TiO2/Bi4V2O[Formula: see text] composites for RhB degradation could be mainly ascribed to the efficient charge separation over dye-induced sensitized and the increased specific surface area. Also, the photocatalytic activities of TiO2/Bi4V2O[Formula: see text] for CIP degradation were tested. After five consecutive recycling experiments, the photocatalytic degradation activity of TB2 could still reach 99% which indicated that the catalysts had superior stability. Based on the experimental and bandgap calculations, a possible photocatalytic mechanism of TiO2/Bi4V2O[Formula: see text] for RhB degradation was proposed.


2013 ◽  
Vol 668 ◽  
pp. 379-382
Author(s):  
Yan Fen Fang ◽  
Jun Zi Liu ◽  
Shu Lian Wang ◽  
An Ping Deng ◽  
Ying Ping Huang

Ag-TiO2@MnO2 nanoparticles prepared by two-step hydrothermal method were characterized by X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), Brunauer-Emmett- Teller (BET) and UV-Visible diffuse reflectance spectra (UV-Vis DRS). The degradation of rhodamine B (RhB) and 2, 4-dichlorophenol (2, 4-DCP) under visible light (λ≥420 nm) were used as probe reactions to investigate the photocatalytic activity of Ag-TiO2@MnO2. The results showed that the basic structure of Ag-TiO2@MnO2 was composed of TiO2 with anatase crystalline structure and α-MnO2 with cubic crysatalline structure. The optimal molar ratio nAg/nMn was 6%. Ag-TiO2@MnO2 had the highest photocatalytic activity in neutral medium because of composing and modifying of Ag. The decolorization rate of RhB reached 100% after 600 min and the mineralization rate of 2, 4-DCP was 47.0% after 30 hr. The oxidation process was dominated by the •OH generated in the system.


2013 ◽  
Vol 652-654 ◽  
pp. 774-778
Author(s):  
Xiao Song Zhou ◽  
Bei Jin ◽  
Bin Yang

Cu(OH)2/N-TiO2compound heterojunction photcocatalyst was prepared via a facile precipitation method. The as-synthesized samples were characterized by means of X-ray diffraction (XRD), field-emission transmission electron microscope (FE-SEM), ultraviolet-visible light (UV-vis) absorbance spectra technologies. The results suggest the as-obtained samples are spherical structure with the diameter of approximately 10-20 nm, the absorbance intensity in the visible light range increased with the amount of deposited increased. Photocatalytic activities of samples were investigated under visible light and methyl orange (MO) acted as simulation pollutants. The catalytic ablity of the synthesized photocatalysts under visible light irradiation showed higher than that of N-P25(TiO2). The remarkable photocatalytic activities are due to the high-quality of composites structure and the driving force for electron transfer in nanoparticle.


Author(s):  
Yaping Guo ◽  
Jianyang Sun ◽  
Hui Chang ◽  
Xu Zhao

A simple, effective and environmental-friendly method was adopted for enhancing the photocatalytic activity of g-C3N4 in the reduction of aqueous Cr(Ⅵ) under visible-light irradiation. The enhancement was achieved via treatment of g-C3N4 in organic solvent with addition of NaOH particles by ultrasonic process for two hours. The results demonstrated that the treated g-C3N4 exhibited much higher photocatalytic activity than pristine g-C3N4 in the reduction of Cr(VI) . Under visible light irradiation for 120 min, the reduced ratios of Cr(VI) with the initial concentration of 50 mg/L in the presence of the treated g-C3N4and pristine g-C3N4 were 100% and 37.1%, respectively. With the addition of fulvic acid, Cr(VI) was efficiently removed at 40 min. Based on the characterization results of the structures and other physiochemical properties of the treated g-C3N4 and pristine g-C3N4 by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV Vis diffuse reflectance, the possible reasons responsible for the enhanced photocatalytic activity of the treated g-C3N4 were proposed. The yield and mechanism of different exfoliation methods were compared by semi-quantitative method.


Sign in / Sign up

Export Citation Format

Share Document