Dye-Sensitized-Assisted, Enhanced Photocatalytic Activity of TiO2/Bi4V2O11

NANO ◽  
2018 ◽  
Vol 13 (03) ◽  
pp. 1850028 ◽  
Author(s):  
Mengjun Liang ◽  
Zhiyuan Yang ◽  
Ying Mei ◽  
Haoran Zhou ◽  
Shuijin Yang

In this study, the TiO2/Bi4V2O[Formula: see text] nanocomposite photocatalysts were prepared by loading different amount of TiO2 nanoparticles onto the surface of Bi4V2O[Formula: see text] nanospheres via a facile hydrothermal method. Afterwards, the as-synthesized samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photocurrent techniques. The optimal TiO2/Bi4V2O[Formula: see text] composite with 20[Formula: see text]wt.% TiO2 loading (TB2) exhibited the best photocatalytic activity, which could degrade almost RhB completely within 30[Formula: see text]min under visible light irradiation. The enhanced photocatalytic activity of TiO2/Bi4V2O[Formula: see text] composites for RhB degradation could be mainly ascribed to the efficient charge separation over dye-induced sensitized and the increased specific surface area. Also, the photocatalytic activities of TiO2/Bi4V2O[Formula: see text] for CIP degradation were tested. After five consecutive recycling experiments, the photocatalytic degradation activity of TB2 could still reach 99% which indicated that the catalysts had superior stability. Based on the experimental and bandgap calculations, a possible photocatalytic mechanism of TiO2/Bi4V2O[Formula: see text] for RhB degradation was proposed.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jiang Zhang ◽  
Zheng-Hong Huang ◽  
Yong Xu ◽  
Feiyu Kang

The iodine-doped Bi2WO6(I-BWO) photocatalyst was prepared via a hydrothermal method using potassium iodide as the source of iodine. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of I-BWO for the degradation of rhodamine B (RhB) was higher than that of pure BWO and I2-BWO regardless of visible light (>420 nm) or ultraviolet light (<400 nm) irradiation. The results of DRS analysis showed that the I-BWO and I2-BWO catalysts had narrower band gaps. XPS analysis proved that the multivalent iodine species including I0and were coadsorbed on the defect surface of Bi2WO6in I-BWO. The enhanced PL intensity revealed that a large number of defects of oxygen vacancies were formed by the doping of iodine. The enhanced photocatalytic activity of I-BWO for degradation of RhB was caused by the synergetic effect of a small crystalline size, a narrow band gap, and plenty of oxygen vacancies.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
M.-J. Zhou ◽  
N. Zhang ◽  
Z. H. Hou

In the present work, graphene-WO3nanowire clusters were synthesizedviaa facile hydrothermal method. The obtained graphene-WO3nanowire clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy (DRS) techniques. The photocatalytic oxygen (O2) evolution properties of the as-synthesized samples were investigated by measuring the amount of evolved O2from water splitting. The graphene-WO3nanowire clusters exhibited enhanced performance compared to pure WO3nanowire clusters for O2evolution. The amount of evolved O2from water splitting after 8 h for the graphene-WO3nanowire clusters isca.0.345 mmol/L, which is more than 1.9 times as much as that of the pure WO3nanowire clusters (ca.0.175 mmol/L). The high photocatalytic activity of the graphene-WO3nanowire clusters was attributed to a high charge transfer rate in the presence of graphene.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Weicheng Xu ◽  
Guangyin Zhou ◽  
Jianzhang Fang ◽  
Zhang Liu ◽  
YunFang Chen ◽  
...  

Praseodymium doped Bi2Sn2O7(BSO), as a visible-light responsive photocatalyst, was prepared by a hydrothermal method with different dopant contents. The as-prepared photocatalysts were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), N2adsorption-desorption isotherm, X-ray photoelectron spectroscopy analysis (XPS), and UV-Vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of prepared catalysts was evaluated by the degradation of Rhodamine Bextra (RhB) and 2,4-dichlorophenol (2,4-DCP) in aqueous solution under visible light irradiation. It was found that Pr doping inhibited the growth of crystalline size and the as-prepared materials were small in size (10–20 nm). In our experiments, Pr-doped BSO samples exhibited enhanced visible-light photocatalytic activity compared to the undoped BSO, and the optimal dopant amount of Pr was 1.0 mol% for the best photocatalytic activity. On the basis of the calculated PL spectra, the mechanism of enhanced photocatalytic activity has been discussed.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


Author(s):  
Irwing M. Ramírez-Sánchez ◽  
Erick R. Bandala

Iron Doped TiO2 nanoparticles (Fe-TiO2) were synthesized and photocatalitically investigated under high and low fluence values of UV-radiation. The Fe-TiO2 physical characterization was performed using X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Diffuse Reflectance Spectroscopy (DRS), and X-Ray Photoelectron Spectroscopy (XPS) technique. The XPS evidenced that ferric ion (Fe3+) was in the lattice of TiO2 and co-dopants no intentionally added were also present due to the precursors of the synthetic method. The Fe3+ concentration played a key role in the photocatalytic generation of hydroxyl radical (&bull;OH) and estriol (E3) degradation. Fe-TiO2 materials accomplished E3 degradation, and it was found that the catalyst with 0.3 at. % content of Fe (0.3 Fe-TiO2) enhanced the photocatalytic activity under low UV-irradiation compared with no intentionally Fe-added TiO2 (zero-iron TiO2) and Aeroxide&reg; TiO2 P25. Furthermore, the enhanced photocatalytic activity of 0.3 Fe-TiO2 under low UV-irradiation may have applications when radiation intensity must be controlled, as in medical applications, or when strong UV absorbing species are present in water.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2139 ◽  
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Zekeriya Biyiklioglu ◽  
Emin Bacaksiz ◽  
Ismail Polat ◽  
...  

ZnWO4MnPc was synthesized via a hydrothermal autoclave method with 1 wt.% manganese (iii) phthalocyanine content. The material was characterized for its structural and morphological features via X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission emission microscopy (TEM), scanning electron microscopy-Energy dispersive X-ray spectroscopy (SEM-EDX), N2 adsorption–desorption at 77K, X-ray photoelectron spectroscopy (XPS), and UV-visible/diffuse reflectance spectroscopy(UV-vis/DRS). ZnWO4MnPc photocatalytic performance was tested on the degradation of bisphenol A (BPA). The ZnWO4MnPc material removed 60% of BPA after 4 h of 365 nm UV irradiation. Degradation process improved significantly to about 80% removal in the presence of added 5 mM H2O2 after 4 h irradiation. Almost 100% removal was achieved after 30 min under 450 nm visible light irradiation in the presence of same concentration of H2O2. The effect of ions and humic acid (HA) towards BPA removal was also investigated.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1341 ◽  
Author(s):  
Ruiqi Wang ◽  
Duanyang Li ◽  
Hailong Wang ◽  
Chenglun Liu ◽  
Longjun Xu

S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 672 ◽  
Author(s):  
Zuzanna Bielan ◽  
Agnieszka Sulowska ◽  
Szymon Dudziak ◽  
Katarzyna Siuzdak ◽  
Jacek Ryl ◽  
...  

In the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and Vis light ranges. Moreover, metal NPs deposition on the magnetic core allowed for the effective separation and reuse of the nanometer-sized photocatalyst from the suspension after the treatment process. The obtained Fe3O4@SiO2/d-TiO2-Pt/Cu photocatalysts were characterized by X-ray diffractometry (XRD) and specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Further, the mechanism of phenol degradation and the role of four oxidative species (h+, e−, •OH, and •O2−) in the studied photocatalytic process were investigated.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yongbiao Wan ◽  
Sihong Wang ◽  
Wenhao Luo ◽  
Lianhua Zhao

Adjusting pH with an ammonia solution during the synthesis, single-crystalline BiVO4has been prepared using Bi(NO3)3·5H2O and NH4VO3as starting materials through aqueous-phase precipitation at room temperature. The prepared samples are characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM). The impact of pH on structure, surface morphology, visible-light photocatalytic activity, and light absorption performance of BiVO4is explored and discussed. During the synthesis process, neither extremely acidic (low pH) nor basic (high pH) conditions are desirable for the formation of BiVO4in monoclinic phase. The highest photocatalytic performance on the degradation of a methylene blue solution is observed under pH=7.0for BiVO4in monoclinic scheelite, which is attributed to its small grain size and marked surface oxygen evolution ability.


Sign in / Sign up

Export Citation Format

Share Document