scholarly journals Natural Polymer of Iraqi Apricot Tree Gum as a Novel Corrosion Inhibitor for Mild Steel in 1 M HCl Solution

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
I. M. Alwaan ◽  
Fouad Kadhim Mahdi

Corrosion inhibition of mild steel in 1 M hydrochloric acid using Iraqi apricot tree gum Arabic as natural polymer was studied. The weight loss method was used to predict the efficiency of the inhibitor on corrosion of mild steel in a temperature range of 17–40°C. The FTIR result of natural polymer revealed that the C=O and O-H groups were found in the structure of the natural polymer. The results of weight loss method showed that the inhibition efficiency (I%) increased with the increase in both the natural polymer concentration and the temperature; therefore, chemical adsorption mechanism was suggested in this system. The different mathematical models of the adsorption isotherms were studied and the results revealed that natural polymer was found to obey Temkin, Langmuir, and Freundlich adsorption isotherm. The activation energy of adsorption, enthalpy of adsorption, and entropy of adsorption were obtained for different concentrations of natural polymer (0, 0.1, 0.2, and 0.3 g/L) and the results showed that the thermodynamic properties decreased with the loading of a natural polymer. Gibbs free energy of adsorption results was a minus value that led to the conclusion of the spontaneous adsorption of the natural polymer in this system.

2016 ◽  
Vol 12 (12) ◽  
pp. 4593-4613
Author(s):  
Rekha. S ◽  
Kannan. K ◽  
Gnanavel. S

2-amino-6-nitrobenzothiazole(ANBT) was used as an inhibitor for the corrosion of mild steel in acid medium since the inhibition efficiency was low for that compound, 2,6-diaminobenzothiazole (DABT) and N-(6-aminobenzo [d] thiazol-2-y1) benzamide(ABTB) was synthesized,  and characterized by FT-IR, H1NMR, and C13NMR.The synthesized compound was tested as a corrosion inhibitor for mild steel in 1N HCl solution using weight loss, Potentiodynamic polarization, and AC impedance techniques. The inhibition efficiency was studied at the different time, temperature and acid concentration by weight loss method. The values of activation energy and free energy of adsorption of these compounds were also calculated, which reveals that the inhibitor was adsorbed on the mild steel by physisorption mechanism. Adsorption obeys Langmuir and Temkin adsorption isotherms. The results obtained by weight loss method revealed that the compound performed as a better inhibitor for mild steel in 1N HCl. Potentiodynamic polarization studies showed that the inhibitor acts as a mixed type inhibitor.AC impedance studies revealed that the corrosion process was controlled by charge transfer process. Surface analysis was studied using SEM and FT-IR.


RSC Advances ◽  
2019 ◽  
Vol 9 (70) ◽  
pp. 40997-41009 ◽  
Author(s):  
Dongyi Li ◽  
Panpan Zhang ◽  
Xinyu Guo ◽  
Xiaowei Zhao ◽  
Ying Xu

The inhibitory effect of radish leaf extract (RLE) on mild steel corrosion in 0.5 M H2SO4 was studied by the weight loss method and the electrochemical method.


2010 ◽  
Vol 7 (3) ◽  
pp. 942-946 ◽  
Author(s):  
B. Anand ◽  
V. Balasubramanian

The inhibition of corrosion of mild steel usingPiper nigrumL in different acid medium by weight loss method was investigated. The corrosion inhibition was studied in hydrochloric acid and sulphuric acid by weight loss method at different time interval at room temperature. The result showed that the corrosion inhibition efficiency of this compound was found to vary with different time interval and different acid concentration. Also, it was found that the corrosion inhibition behavior ofPiper nigrumL is greater in sulphuric acid than hydrochloric acid. So,Piper nigrumL can be used as a good inhibitor for preventing mild steel material.


Author(s):  
Ahmed Al-Amiery

New corrosion inhibitor derived from coumarin-3-amine namely 3-((2-chlorobenzylidene)amino)coumarin was synthesized and characterized by CHN elemental analysis in addition to Fourier transform infrared and nuclear magnetic resonance techniques. The anti-corrosion ability of 3-((2-chlorobenzylidene)amino)coumarin to inhibit the impacts of corrosion has been demonstrated and damage reduction of the mild steel also. 3-((2-chlorobenzylidene)amino)coumarin, has been employed as a good corrosion inhibitor for mild steel in HCL solution. The efficiency of the inhibition was figured according to weight loss method and it was 74.6%.


2019 ◽  
Vol 40 ◽  
pp. 25-29
Author(s):  
Bishal Thapa ◽  
Dipak Kumar Gupta ◽  
Amar Prasad Yadav

The bark extract of Euphorbia royleana as a green corrosion inhibitor was studied in 1M HCl using weight-loss method and potential measurement. The results show that the bark extract of Euphorbia royleana is an effective anti-corrosion inhibitor of mild steel in acidic media. The corrosion rate decreases with the time of immersion. Weight loss experiment shows that the loss in weight decreases with the time of immersion and inhibition efficiency increases with the concentration of extract. It was observed that maximum inhibition efficiency is 99.60% in 100% concentration of extract. Potential measurement study shows that bark extracts act as a mixed type of inhibitor i.e. inhibits both anodically as well as cathodically. 


Author(s):  
Moussa Ouakki ◽  
M. Galai ◽  
Z. Aribou ◽  
M. Rbaa ◽  
B. Lakhrissi ◽  
...  

The inhibition performance of two imidazole derivatives, IM-Cl and IM-CH3, on the corrosion behavior of MS in 1M HCl acid solution was studied through weight loss method and electrochemical tests. The results obtained from the electrochemical methods show that inhibition efficiency increases with the increase of inhibitors concentration. The adsorption of inhibitors on the mild steel surface obeys Langmuir adsorption isotherm. The corrosion protection was once also investigated with the aid of UV–Vis spectrophotometry. SEM-EDX was performed and discussed for surface study of uninhibited and inhibited mild steel samples.


Author(s):  
Buraq T Sh AL-Mosawi ◽  
Mohammed M Sabri ◽  
Muhanad A Ahmed

Abstract In chemical manufactures, the corrosion inhibitors were added in order to reduce the corrosion of mild steel. Chemical molecules are often used on mild steel surfaces as portion of the latest finishing steps before painting and/or storage. Here, this work elucidated the utilization of an isatin derivative, namely, 3-((3-acetylphenyl)imino)indolin-2-one synergistic with zinc oxide nanoparticles for improving the impedance of mild steel (MS) against corrosion in 1.0 M hydrochloric acid using the weight loss method and scanning electron microscopy (SEM). Weight loss measurements demonstrated that the best 3-((3-acetylphenyl)imino)indolin-2-one concentration was 0.5 mM and the inhibition efficiency was 83% whereas the inhibition efficiency was 92% with addition of ZnO NPs. 3-((3-Acetylphenyl)imino)indolin-2-one retards the corrosion process at 300 K and demonstrates low inhibition efficiencies at 310, 320 and 330 K.


2021 ◽  
Vol 40 (3) ◽  
pp. 393-403
Author(s):  
C.F Nwachukwu ◽  
I.M. Dagwa ◽  
B.I. Ugheoke

There are many plant extracts that have been studied for possible use as corrosion inhibitors in the oil and gas industries. Hence, this work is focused on optimization of blended Guava and Fluted Pumpkin Leaves extract as corrosion inhibitor of mild steel in HCI using Weight loss method. Response Surface Methodology of Design Expert trial version 12 StatEase was used to design and analyze the result of the 35-run experiments. Three factor-three level was adopted in the design. Time, Temperature and Inhibitor Quantity were the independent variables, while the acid concentration of 0.5M was constant throughout the experiments and Inhibition Efficiencies were measured using IE formula. Intervals of 1 hr, 0.2g, and 10°C were chosen for the immersion time, inhibitor quantity and temperature, respectively. Phytochemical analysis carried out on the Guava and Fluted Pumpkin Leaves shows that each leaf extract contains phytochemicals which are responsible for inhibiting corrosion. Weight loss result shows that the Blended extract reduces the corrosion rate of mild steel in 0.5M HCl. Additionally, 4 experiments for Blended Extract, Fluted Pumpkin, Guava Extract and Industrial Inhibitor were carried out at optimal conditions as predicted by the software at time 4.036 hr, temperature 49.5°C, inhibitor quantity 0.487g and ratio of 59.21GE:FP40.79 Inhibition Efficiencies of the Blended, Fluted Pumpkin, Guava Extracts and Industrial Inhibitor were 93.70%, 78.14%, 63.7% and 95.18%, respectively. The results show that the blended and Industrial Inhibitor compared well with the software predicted IE of 96.085%. Therefore, the blended extract could serve as good substitute to the industrial inhibitor.


2018 ◽  
Vol 25 (02) ◽  
pp. 1850050
Author(s):  
V. SHANMUGA PRIYA ◽  
C. UMA RANI ◽  
S. VELRANI

The synergistic effect of halide ions such as KCl, KBr and KI on the corrosion inhibition of mild steel in 1 N sulphuric acid by [Formula: see text]-2,c-6-diphenyl-t-3-methyl piperdin-4-ones with semicarbazone (01[Formula: see text]SC), [Formula: see text]-2,c-6-diphenyl-N-methyl-t-3-ethyl piperdin-4-ones with semicarbazone (02[Formula: see text]SC) and 2,6-diphenyl-t-3-ethyl piperdin-4-one with semicarbazone (03[Formula: see text]SC) has been examined by weight loss method, potentiodynamic polarization measurements and electrochemical AC impedance spectroscopy. Results show that substituted [Formula: see text]-2,c-6-diphenyl piperidin-4-ones with semicarbazone act as the perfect corrosion inhibitors and their inhibition efficiency increases with the addition of halide ions. The inhibitor (01[Formula: see text]SC) shows the inhibition efficiency of 78.28% (0.2[Formula: see text]mM) by using a weight loss method. The influence of I[Formula: see text], Br[Formula: see text] and Cl[Formula: see text] anions raises the inhibition efficiency of the substituted 2,6-diphenyl piperidin-4-ones with semicarbazone due to the synergistic effect. The synergistic effect of halide ions was formed in the following order: KI [Formula: see text] KBr [Formula: see text] KCl.


2019 ◽  
Vol 5 (1) ◽  
pp. 01-09
Author(s):  
Arwa AL-Amouri ◽  
Priy Brat Dwivedi

Purpose of study: The corrosion behavior of mild steel and the inhibition effect of ascorbic acid (an anti-oxidant additive) on aluminum coatings on the mild steel have been studied by weight loss technique under different corrosive medium.  Methodology: Tap water, 3% Na2CO3 solution, seawater and open-air were chosen as different corrosive medium at ambient temperature range of 35- 400C. Corrosion was recorded using the weight-loss method and the rate was calculated. Later similar mid steel samples were coated with Sodium Bicarbonate paste, aluminum paint with ascorbic acid additive, and aluminum paint without ascorbic acid additive, in similar corroding medium, and the corrosion rate was calculated using the weight-loss method.  Main Findings: Results show that the percentage of mild steel corrosion was found to be highest in the seawater and lowest in 3% Na2CO3 solution. Sodium Bicarbonate paste reduces the corrosion rate more studies on the corrosion protection was performed by coating the mild steel surface with aluminum paint along with ascorbic acid inhibitor i.e., a green corrosion inhibitor and it was found that the weight loss data is: 85.03 g from 85.05 g, 82.39 g from 82.43 g, no weight loss and 85.73 g from 85.74 g in tap water, seawater, 3% Na2CO3 solution and air medium respectively. Thus, the addition of ascorbic acid inhibitor gave the highest inhibition efficiency for aluminum paint. 


Sign in / Sign up

Export Citation Format

Share Document