scholarly journals Colorimetric Detection of Caspase 3 Activity and Reactive Oxygen Derivatives: Potential Early Indicators of Thermal Stress in Corals

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Mickael Ros ◽  
Mathieu Pernice ◽  
Sebastien Le Guillou ◽  
Martina A. Doblin ◽  
Verena Schrameyer ◽  
...  

There is an urgent need to develop and implement rapid assessments of coral health to allow effective adaptive management in response to coastal development and global change. There is now increasing evidence that activation of caspase-dependent apoptosis plays a key role during coral bleaching and subsequent mortality. In this study, a “clinical” approach was used to assess coral health by measuring the activity of caspase 3 using a commercial kit. This method was first applied while inducing thermal bleaching in two coral species,Acropora milleporaandPocillopora damicornis. The latter species was then chosen to undergo further studies combining the detection of oxidative stress-related compounds (catalase activity and glutathione concentrations) as well as caspase activity during both stress and recovery phases. Zooxanthellae photosystem II (PSII) efficiency and cell density were measured in parallel to assess symbiont health. Our results demonstrate that the increased caspase 3 activity in the coral host could be detected before observing any significant decrease in the photochemical efficiency of PSII in the algal symbionts and/or their expulsion from the host. This study highlights the potential of host caspase 3 and reactive oxygen species scavenging activities as early indicators of stress in individual coral colonies.

2021 ◽  
Vol 20 (1) ◽  
pp. 76-83
Author(s):  
Chi-Sen Chang ◽  
Yuh-Chiang Shen ◽  
Chi-Wen Juan ◽  
Chia-Lin Chang ◽  
Po-Kai Lin

The neuroprotective mechanisms of Crataegus pinnatifida extracts and crataegolic acid were studied using paraquat induced cytotoxicity in PC12 cells. C. pinnatifida extracts were prepared using hexane, ethyl acetate, and 95% ethanol. Additionally, crataegolic acid (also known as maslinic acid) was found in C. pinnatifida extracts. Assessment methods included the examinations of cytotoxicity, intracellular reactive oxygen species and calcium changes, activity of caspase-3 and α-synuclein, apoptotic cell death, and the expression levels of the B-cell lymphoma 2 (Bcl-2) and BCL2-associated X (Bax) proteins to investigate the neuroprotective mechanisms of C. pinnatifida extracts and its active component, crataegolic acid. The three extracts and crataegolic acid exhibited potent neuroprotective actions against paraquat induced PC12 cell apoptosis at 5–20µg/mL and 80–100µM concentrations, respectively. The key protective mechanisms included decreasing cell apoptosis, upregulating Bcl-2 protein levels, and downregulating Bax protein levels. The 95% ethanol extract also decreased paraquat induced reactive oxygen species production, calcium overloading, and caspase-3 and α-synuclein activities. The beneficial effects of these extracts could be explained by the active component, crataegolic acid that also inhibited paraquat-induced apoptosis through the suppression of reactive oxygen species generation and the caspase-3 signaling pathway.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Asiya Parvin Allaudeen ◽  
Ajay Devendran ◽  
John E Baker ◽  
Anuradha Dhanasekaran

Erythropoietin (EPO) is a cytokine produced primarily in the kidney that is essential for red blood cell production. Apart from playing a role in hematopoiesis, EPO also has a protective role in heart myocytes, ovarian, glial cells brain and retinal diseases. In this study we observed that recombinant human EPO (rhEPO) reduces Hypoxia/ Reperfusion (H/R) injury by virtue of its effect on EPO receptor prosurvival signaling pathway, which ultimately leads to reduced expression of apoptotic proteins and increased survival of cardiomyocytes. H9C2 cells were exposed to H/R with or without pretreatment using 10, 15 and 20 U/ml of rhEPO. We determined viability using MTT, nuclear fragmentation by Hoechst staining, apoptotic nuclei by Acridine orange and Ethidium bromide, Reactive Oxygen Species (ROS) by Dicholorofluoresin Diacetate and activity of late apoptotic protease, Caspase-3 by colorimetric Caspase-3 assay. The expression of mitochondrial superoxide dismutase (MnSOD) by RT-PCR and Western blot, phospho-Akt and p38 MAPK by Confocal microscopy were analyzed. Cell viability is increased in cells pretreated with rhEPO compared to cell exposed to H/R. Cells subjected to H/R showed early apoptotic and late apoptotic cells but showed normal nuclei with intact cell membrane in cells pretreated with rhEPO. Intracellular production of ROS and Caspase-3 activity was decreased in cells pretreated with rhEPO compared to cells exposed to H/R. The expression of MnSOD RNA and protein was up-regulated in response to rhEPO, but not in H/R. The phosphorylative activation of Akt, p38MAPK progressively diminished during H/R but increased in rhEPO pretreated cells. We show that rhEPO prevents apoptosis in cardiomyocytes, subjected to H/R injury via phosphorylation of Akt and p38MAPK. These results it is hoped would help us distinguish the cell signaling pathways involved in cardioprotection and thus would open new avenues in cardiovascular therapy.


2001 ◽  
Vol 280 (1) ◽  
pp. L10-L17 ◽  
Author(s):  
Han-Ming Shen ◽  
Zhuo Zhang ◽  
Qi-Feng Zhang ◽  
Choon-Nam Ong

Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.


2018 ◽  
Vol 36 ◽  
pp. 48-56 ◽  
Author(s):  
Meiaoxue Han ◽  
Renjun Wang ◽  
Ning Ding ◽  
Xiuxia Liu ◽  
Ningning Zheng ◽  
...  

2018 ◽  
Author(s):  
Assaf R. Gavish ◽  
Orr H. Shapiro ◽  
Esti Kramarsky-Winter ◽  
Assaf Vardi

AbstractCoral disease is often studied at scales ranging from single colonies to the entire reef. This is particularly true for studies following disease progression through time. To gain a mechanistic understanding of key steps underlying infection dynamics, it is necessary to study disease progression, and host-pathogen interactions, at relevant microbial scales. Here we provide a dynamic view of the interaction between the model coral pathogen Vibrio coralliilyticus and its coral host Pocillopora damicornis at unprecedented spatial and temporal scales. This view is achieved using a novel microfluidics-based system specifically designed to allow microscopic study of coral infection in-vivo under controlled environmental conditions. Analysis of exudates continuously collected at the system’s outflow, allows a detailed biochemical and microbial analyses coupled to the microscopic observations of the disease progression. The resulting multilayered dataset provides the most detailed description of a coral infection to-date, revealing distinct pathogenic processes as well as the defensive behavior of the coral host. We provide evidence that infection in this system occurs following ingestion of the pathogen, and may then progress through the gastrovascular system. We further show infection may spread when pathogens colonize lesions in the host tissue. Copious spewing of pathogen-laden mucus from the polyp mouths results in effective expulsion of the pathogen from the gastrovascular system, possibly serving as a first line of defense. A secondary defense mechanism entails the severing of calicoblastic connective tissues resulting in the controlled isolation of diseased polyps, or the survival of individual polyps within infected colonies. Further investigations of coral-pathogen interactions at these scales will help to elucidate the complex interactions underlying coral disease, as we as the versatile adaptive response of the coral ecosystems to fluctuating environments.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770163 ◽  
Author(s):  
Niharika Sinha ◽  
Prashanta Kumar Panda ◽  
Prajna Paramita Naik ◽  
Tapas K Maiti ◽  
Sujit K Bhutia

The accumulating evidences show that Abrus agglutinin, a plant lectin, displays a broad range of anticancer activity including cancer-specific induction of apoptosis; however, the underlying molecular mechanism of Abrus agglutinin–induced oral cancer stem cell elimination remains elusive. Our data documented that Abrus agglutinin effectively downregulated the CD44+ expression with the increased CD44− population in different oral cancer cells. After 24-h Abrus agglutinin treatment, FaDu cells were quantified for orosphere formation in ultra-low attachment plates and data showed that Abrus agglutinin inhibited the number and size of orosphere in a dose-dependent manner in FaDu cells. Furthermore, Abrus agglutinin hindered the plasticity of FaDu orospheres as supported by reduced sphere formation and downregulated the self-renewal property via inhibition of Wnt-β-catenin signaling pathway. Introduction of LiCl, a glycogen synthase kinase 3β inhibitor, rescued the Abrus agglutinin–stimulated inhibition of β-catenin and phosphorylated glycogen synthase kinase 3β in FaDu cell–derived orospheres confirming importance of Wnt signaling in Abrus agglutinin–mediated inhibition of stemness. In this connection, our data showed that Abrus agglutinin restrained proliferation and induced apoptosis in FaDu-derived cancer stem cells in dose-dependent manner. Moreover, western blot data demonstrated that Abrus agglutinin increased the Bax/Bcl-2 ratio with activation of poly(adenosine diphosphate–ribose) polymerase and caspase-3 favoring apoptosis induction in orospheres. Abrus agglutinin induced reactive oxygen species accumulation in orospheres and pretreatment of N-acetyl cysteine, and a reactive oxygen species scavenger inhibited Abrus agglutinin–mediated caspase-3 activity and β-catenin expression indicating reactive oxygen species as a principal regulator of Wnt signaling and apoptosis. In conclusion, Abrus agglutinin has a potential role as an integrative therapeutic approach for combating oral cancer through targeting self-renewability of orospheres via reactive oxygen species–mediated apoptosis.


Sign in / Sign up

Export Citation Format

Share Document