scholarly journals Histone Lysine Methylation in TGF-β1 Mediated p21 Gene Expression in Rat Mesangial Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Qiaoyan Guo ◽  
Xiaoxia Li ◽  
Hongbo Han ◽  
Chaoyuan Li ◽  
Shujun Liu ◽  
...  

Transforming growth factor beta1- (TGF-β1-) induced p21-dependent mesangial cell (MC) hypertrophy plays a key role in the pathogenesis of chronic renal diseases including diabetic nephropathy (DN). Increasing evidence demonstrated the role of posttranscriptional modifications (PTMs) in the event; however, the precise regulatory mechanism of histone lysine methylation remains largely unknown. Here, we examined the roles of both histone H3 lysine 4 and lysine 9 methylations (H3K4me/H3K9me) in TGF-β1 induced p21 gene expression in rat mesangial cells (RMCs). Our results indicated that TGF-β1 upregulated the expression of p21 gene in RMCs, which was positively correlated with the increased chromatin marks associated with active genes (H3K4me1/H3K4me2/H3K4me3) and negatively correlated with the decreased levels of repressive marks (H3K9me2/H3K9me3) at p21 gene promoter. TGF-β1 also elevated the recruitment of the H3K4 methyltransferase (HMT) SET7/9 to the p21 gene promoter. SET7/9 gene silencing with small interfering RNAs (siRNAs) significantly abolished the TGF-β1 induced p21 gene expression. Taken together, these results reveal the key role of histone H3Kme in TGF-β1 mediated p21 gene expression in RMC, partly through HMT SET7/9 occupancy, suggesting H3Kme and SET7/9 may be potential renoprotective agents in managing chronic renal diseases.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangjun Li ◽  
Chaoyuan Li ◽  
Xiaoxia Li ◽  
Peihe Cui ◽  
Qifeng Li ◽  
...  

Diabetic nephropathy (DN), a common complication associated with type 1 and type 2 diabetes mellitus (DM), characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM) protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD). Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC) hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs) have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme) mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT) SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG-) treated rat mesangial cells (RMCs). p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP) assays showed decreased histone H3-lysine9-dimethylation (H3K9me2) accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3) and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expressionin vivoandin vitrounder diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.


2021 ◽  
Author(s):  
Jordi Hintzen ◽  
Yan Luo ◽  
Miriam Porzberg ◽  
Paul White ◽  
Jie Jian ◽  
...  

Histone lysine methylation and acetylation are important posttranslational modifications that regulate gene expression in humans. Due to the interplay of these two modifications, new chemical methods to study lysine posttranslational...


Author(s):  
Kai Cheng ◽  
Yingchao Xu ◽  
Chao Yang ◽  
Luc Ouellette ◽  
Longjian Niu ◽  
...  

Recent advances in the regulation of histone lysine methylation in plants and the role of this modification in the developmental programming of Arabidopsis are discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Di Nisio ◽  
Giuseppe Lupo ◽  
Valerio Licursi ◽  
Rodolfo Negri

Eukaryotic genomes are wrapped around nucleosomes and organized into different levels of chromatin structure. Chromatin organization has a crucial role in regulating all cellular processes involving DNA-protein interactions, such as DNA transcription, replication, recombination and repair. Histone post-translational modifications (HPTMs) have a prominent role in chromatin regulation, acting as a sophisticated molecular code, which is interpreted by HPTM-specific effectors. Here, we review the role of histone lysine methylation changes in regulating the response to radiation-induced genotoxic damage in mammalian cells. We also discuss the role of histone methyltransferases (HMTs) and histone demethylases (HDMs) and the effects of the modulation of their expression and/or the pharmacological inhibition of their activity on the radio-sensitivity of different cell lines. Finally, we provide a bioinformatic analysis of published datasets showing how the mRNA levels of known HMTs and HDMs are modulated in different cell lines by exposure to different irradiation conditions.


2009 ◽  
Vol 4 (6) ◽  
pp. 484-488 ◽  
Author(s):  
Christopher I. Cazzonelli ◽  
Tony Millar ◽  
E. Jean Finnegan ◽  
Barry J. Pogson

2010 ◽  
Vol 51 (12) ◽  
pp. 6784 ◽  
Author(s):  
Rajesh C. Rao ◽  
Kissaou T. Tchedre ◽  
Muhammad Taimur A. Malik ◽  
Natasha Coleman ◽  
Yuan Fang ◽  
...  

Author(s):  
Gunnar Schotta ◽  
Monika Lachner ◽  
Antoine H. F. M. Peters ◽  
Thomas Jenuwein

1994 ◽  
Vol 267 (4) ◽  
pp. F528-F536 ◽  
Author(s):  
G. Grandaliano ◽  
G. G. Choudhury ◽  
P. Biswas ◽  
H. E. Abboud

Thrombin elicits multiple biological effects on a variety of cells. We have previously shown that thrombin is a potent mitogen for human glomerular mesangial cells. This mitogenic effect of thrombin is associated with activation of phospholipase C (PLC) and induction of platelet-derived growth factor (PDGF) gene expression. The thrombin receptor, which belongs to the guanine nucleotide binding protein (G protein)-coupled receptor family, has recently been shown to induce rapid tyrosine phosphorylation of cellular proteins. In the present study, we investigated the role of protein-tyrosine phosphorylation in mediating the cellular responses elicited by thrombin in human glomerular mesangial cells. Amino acid labeling followed by immunoprecipitation with phosphotyrosine antibodies demonstrate that thrombin stimulates tyrosine phosphorylation of a set of cellular proteins. Treatment of mesangial cells with thrombin followed by immunoblotting with phosphotyrosine antibodies showed three major bands of tyrosine-phosphorylated proteins approximately 130, 70, and 44-42 kDa. Phosphorylation of these proteins was inhibited by two tyrosine kinase inhibitors, herbimycin A and genistein. Both compounds inhibited DNA synthesis and PDGF B-chain gene expression but had no effect on inositol phosphates production or increases in cytosolic calcium in response to thrombin. These data demonstrate that protein-tyrosine phosphorylation is not required for thrombin-induced PLC activation with inositol phosphate formation and subsequent intracellular calcium release, but it is an absolute requirement for thrombin-induced DNA synthesis and PDGF B-chain gene expression.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Liping Dou ◽  
Fei Yan ◽  
Jiuxia Pang ◽  
Dehua Zheng ◽  
Dandan Li ◽  
...  

Abstract The oncogenic fusion protein AML1-ETO retains the ability of AML1 to interact with the enhancer core DNA sequences, but blocks AML1-dependent transcription. Previous studies have shown that post-translational modification of AML1-ETO may play a role in its regulation. Here we report that AML1-ETO-positive patients, with high histone lysine methyltransferase Enhancer of zeste homolog 1 (EZH1) expression, show a worse overall survival than those with lower EZH1 expression. EZH1 knockdown impairs survival and proliferation of AML1-ETO-expressing cells in vitro and in vivo. We find that EZH1 WD domain binds to the AML1-ETO NHR1 domain and methylates AML1-ETO at lysine 43 (Lys43). This requires the EZH1 SET domain, which augments AML1-ETO-dependent repression of tumor suppressor genes. Loss of Lys43 methylation by point mutation or domain deletion impairs AML1-ETO-repressive activity. These findings highlight the role of EZH1 in non-histone lysine methylation, indicating that cooperation between AML1-ETO and EZH1 and AML1-ETO site-specific lysine methylation promote AML1-ETO transcriptional repression in leukemia.


Sign in / Sign up

Export Citation Format

Share Document