scholarly journals Preparation of Zirconia Nanofibers by Electrospinning and Calcination with Zirconium Acetylacetonate as Precursor

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1067 ◽  
Author(s):  
Vyacheslav V. Rodaev ◽  
Svetlana S. Razlivalova ◽  
Andrey O. Zhigachev ◽  
Vladimir M. Vasyukov ◽  
Yuri I. Golovin

For the first time, zirconia nanofibers with an average diameter of about 75 nm have been fabricated by calcination of electrospun zirconium acetylacetonate/polyacrylonitrile fibers in the range of 500–1100 °C. Composite and ceramic filaments have been characterized by scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption analysis, energy-dispersive X-ray spectroscopy, and X-ray diffractometry. The stages of the transition of zirconium acetylacetonate to zirconia have been revealed. It has been found out that a rise in calcination temperature from 500 to 1100 °C induces transformation of mesoporous tetragonal zirconia nanofibers with a high specific surface area (102.3 m2/g) to non-porous monoclinic zirconia nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2/g). The tetragonal zirconia nanofibers with high specific surface area prepared at 500 °C can be considered, for instance, as promising supports for heterogeneous catalysts, enhancing their activity.

Author(s):  
Wanli Jia ◽  
Jun Li ◽  
Zhongjie Lu ◽  
Yongfei Juan ◽  
Yunqiang Jiang

Honeycomb-like CO3O4 nanosheets with high specific surface area were successfully synthesized on porous nickel foam by the facile hydrothermal method followed by an annealing treatment (300 °C), which were used as high-performance supercapacitor electrodes. The effects of mole ratio of hexamethylenetetramine (HMT) and Co(NO3)2 (1:1, 2:1, 3:1, 4:1, 5:1 and 6:1)as the reactants on morphological evolution and electrochemical performance of the electrodes were investigated in detail. X-ray diffractometry, transmission electron microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were applied to characterize the structure and morphology of the products. The electrochemical performance was measured by cyclic voltammetry (CV) and galvanostatic charge/discharge. The results indicated that phase constituents were almost unaffected with the change in mole ratio of HMT and Co(NO3)2. However, the significant morphological evolution of Co3O4 was observed with increasing the mole ratio, which was described as followed: the nanosheets accompanied with a large number of spherical nanoparticles→the formation of some strip-like particles due to the agglomeration of spherical nanoparticles→the formation of new nanosheets resulting from the growth of strip-like particles→the formation of coarse flower-like particles owing to the connection among the nanosheets→the nanosheets gradually covered with flower-like particles. Accompanied with the change, the specific surface area was increased firstly, and then decreased. A maximum was obtained in the HMT and Co(NO3)2 mole ratio of 4:1, which was further validated by CV and galvanostatic charge/discharge tests. The specific capacitance value was 743.00 F·g-1 at 1 A·g-1 in the galvanostatic charge/discharge test, which was apparently higher than those in the other mole ratios (139.11 F·g-1 in 1:1, 280.46 F·g-1 in 2:1, 503.29 F·g-1 in 3:1, 463.75 F·g-1 in 5:1 and 363.74 F·g-1 in 6:1). The change was also observed in the CV test with a scanning rate of 5 mV·s-1 (121.32 F·g-1 in 1:1, 217.33 F·g-1 in 2:1, 559.86 F·g-1 in 3:1, 693.56 F·g-1 in 4:1, 423.35 F·g-1 in 5:1 and 321.64 F·g-1 in 6:1). Co3O4 synthesized in the mole ratio of 4:1 also demonstrated an excellent cyclic performance, in which about 97% of the initial specific capacitance was remained at 1 A·g-1 for 500 cycles in the galvanostatic charge/discharge test. This excellent electrochemical performance was ascribed to high specific surface area of Co3O4 nanosheets that provide enough channels and space for ions transportion.


2007 ◽  
Vol 336-338 ◽  
pp. 2286-2289
Author(s):  
Fei He ◽  
Xiao Dong He ◽  
Yao Li

Low-density xSiO2-(1-x)Al2O3 xerogels with x=0.9, 0.8, 0.7, 0.6 (mole fractions) were prepared by sol-gel and non-supercritical drying. Silica alkogels, which were the framework of binary composite materials, formed from tetraethyl orthosilicate (TEOS) by hydrolytic condensation with a molar ratio of TEOS: H2O: alcohol: hydrochloric acid: ammonia =1: 4: 10: 7.5×10-4: 0.0375. Aluminum hydroxide derived from Al(NO3)3·9H2O and NH4OH acting in the alcohol solution under the condition of catalyst. After filtrating and washing, the precipitation was mixed into silica sols to form SiO2-Al2O3 mixed oxide gels with different silicon and aluminum molar ratio. The structural change and crystallization of the binary xerogels were investigated after heat treatment at 600 for 2 h by the means of X-ray diffraction. Nitrogen adsorption experiment was performed to estimate specific surface area, porous volume and pore size distribution. The structural change of xerogels was observed by FT-IR spectroscopy. The resulting mixed xerogels possess of mesoporous structure which is characteristic of cylindrical pores, high specific surface area of 596-863 m2/g and a relatively narrow pore distribution of 2.8-30 nm. Al2O3 is introduced into the SiO2 phase and some of Al-O-Si bonds form.


2012 ◽  
Vol 518-523 ◽  
pp. 1753-1756 ◽  
Author(s):  
Gang Liu ◽  
Quan Deng ◽  
Yong Yang ◽  
Hui Min Wang ◽  
Guo Zhong Wang

We have succeeded in preparing micro/nanostructured α-Fe2O3 spheres (MNFSs). The resulted MNFSs have an average diameter of about 5 µm, and are constructed by subunits of interlinked and elongated particles with a diameter of 20~60 nm. MNFSs show an obviously structural enhanced Cr(VI) removal capacity (5.88 mg/g) compared with nanoscaled (0.81 mg/g) and microscaled α-Fe2O3 (0.1 mg/g) due to its high specific surface area together with the special porous structure. Moreover, MNFSs show good availability of reusing to remove Cr(VI) ions.


2008 ◽  
Vol 591-593 ◽  
pp. 771-776 ◽  
Author(s):  
Chieko Yamagata ◽  
João B. Andrade ◽  
Valter Ussui ◽  
Nelson Batista de Lima ◽  
José Octavio Armani Paschoal

Zircon sand was reacted with liquid caustic soda (50% NaOH) in open vessel at 600 oC for 2h. The effect of NaOH/ZrSiO4 reactant ratio on the yield of zirconia recovery was verified. Samples of fusion products water washed were characterized by X-ray diffraction (XRD) to identify the main compounds formed. Silica powders were obtained via acid catalyzed reaction and zirconia powders were resulted from crystallization of zirconium oxychoride. Both zirconia and silica powders were analyzed by XRF (X-ray fluorescence) and BET method. Laser Quasi Elastic Light Scattering (QLS) technique was used for agglomerate size distribution determination. High purity and fine zirconia and silica powders were obtained. The specific surface area of zirconia calcined at 550 oC reached ~ 70m2g-1. Silica powder calcined at 800 oC presented a high specific surface area ~ 500 m2g-1.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 297
Author(s):  
Xiaofeng Wang ◽  
Xu Li ◽  
Guozheng Zhang ◽  
Zihao Wang ◽  
Xue-Zhi Song ◽  
...  

In this work, we present a strategy to improve the gas-sensing performance of NiFe2O4 via a controllable annealing Ni/Fe precursor to fluffy NiFe2O4 nanosheet flowers. X-ray diffraction (XRD), a scanning electron microscope (SEM), nitrogen adsorption–desorption measurements and X-ray photoelectron spectroscopy (XPS) were used to characterize the crystal structure, morphology, specific surface area and surface structure. The gas-sensing performance was tested and the results demonstrate that the response was strongly influenced by the specific surface area and surface structure. The resultant NiFe2O4 nanosheet flowers with a heating rate of 8 °C min−1, which have a fluffier morphology and more oxygen vacancies in the surface, exhibited enhanced response and shortened response time toward ethanol. The easy approach facilitates the mass production of gas sensors based on bimetallic ferrites with high sensing performance via controlling the morphology and surface structure.


2014 ◽  
Vol 79 (8) ◽  
pp. 1007-1017 ◽  
Author(s):  
Mozaffar Abdollahifar ◽  
Reza Zamani ◽  
Ehsan Beiygie ◽  
Hosain Nekouei

The micro-mesopores flowerlike ?-Al2O3 nano-architectures have been synthesized by thermal decomposition method using the synthesized AlOOH (boehmite) as precursor. After calcination at 500?C for 5 h, the obtained flowerlike ?-Al2O3 has similar structure like the AlOOH precursor. X-ray diffraction (XRD), FTIR, TG, FESEM and TEM techniques were used to characterize morphology and structure of the synthesized samples. The specific surface area (BET), pore volume and pore-size distribution of the products were determined by N2 adsorption-desorption measurements. The flowerlike ?-Al2O3 showed BET high specific surface area 148 m2 g-1 with total pore volume 0.59 cm3 g-1.


2011 ◽  
Vol 485 ◽  
pp. 279-282
Author(s):  
Keiko Fukushi ◽  
Sae Nakajima ◽  
Kazuyoshi Uematsu ◽  
Tadashi Ishigaki ◽  
Kenji Toda ◽  
...  

Anatase TiO2 having high temperature stability and specific surface area was synthesized using a gel precursor in very mild conditions. The precursor gel was obtained by dialysis treatment of Na16Ti10O28–HNO3 solution. The samples were characterized by X-ray diffraction analysis, transmission electron microscopy, Brunner–Emmett–Teller method for specific surface area measurements, and thermogravimetric analysis.


2012 ◽  
Vol 45 (5) ◽  
pp. 881-889 ◽  
Author(s):  
Elvia Anabela Chavez Panduro ◽  
Thomas Beuvier ◽  
Manuel Fernández Martínez ◽  
Leila Hassani ◽  
Brice Calvignac ◽  
...  

The results of small-angle and ultra-small-angle X-ray scattering on porous CaCO3microparticles of pulverulent vaterite made by a conventional chemical route and by using supercritical CO2are presented. The scattering curves are analysed in the framework of the Guinier–Porod model, which gives the radii of gyration of the scattering objects and their fractal dimension. In addition, the porosity and the specific surface area are determined by using the Porod invariant, which is modified to take into account the effective thickness of the pellet. The results of this analysis are compared with those obtained by nitrogen adsorption.


2008 ◽  
Vol 40 (2) ◽  
pp. 175-184 ◽  
Author(s):  
M.M. Lazic ◽  
M.S. Hadnadjev ◽  
G.C. Boskovic ◽  
D.Z. Obadovic ◽  
E.E. Kiss

The influence of sodium ions on the specific surface area of a NiO-Al2O3 catalyst in dependence of nickel loading (5, 10, and 20 wt% Ni), temperature of heat treatment (400, 700 and 1100oC) and the method of sample preparation was investigated. Low temperature nitrogen adsorption (LTNA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were applied for sample characterization. Dramatic differences in the specific surface area were registered between non-rinsed and rinsed Al2O3 and NiO-Al2O3 samples. The lagged sodium ions promote sintering of non-rinsed catalyst samples.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1754
Author(s):  
Zhiwei Ying ◽  
Lu Huang ◽  
Lili Ji ◽  
He Li ◽  
Xinqi Liu ◽  
...  

Porous carbon material with high specific surface area was prepared from soybean dreg by a simple and effective two-step method (high temperature pyrolysis and activation). The structural characteristics of the synthesized carbon were evaluated by Brunauer–Emmett–Teller (BET), N2 adsorption/desorption measurements/techniques, an elemental analyzer (EA), scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), an X-ray diffractometer (XRD), Raman spectroscopy (Raman), a Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The specific surface area of SDB-6-K was 2786 m2 g−1, the pore volume was 2.316 cm3 g−1, and the average pore size was 3.326 nm. The high specific surface area and effective functional groups of carbon material promoted the adsorption of methylene blue. The maximum adsorption capacity of SDB-6-K to methylene blue was 2636 mg g−1 at 318 K. The adsorption kinetic and isotherm data were most suitable for pseudo-second-order and Langmuir equations. The results showed that the adsorbent had excellent adsorptive ability and had good practical application potential in the field of dye wastewater treatment in the future.


Sign in / Sign up

Export Citation Format

Share Document