Nickel Ferrite: Combustion Synthesis, Characterization and Magnetic Properties

2005 ◽  
Vol 498-499 ◽  
pp. 618-623 ◽  
Author(s):  
Ana Cristina Figueiredo de Melo Costa ◽  
Lucianna Gama ◽  
M.R. Morelli ◽  
Ruth Herta Goldsmith Aliaga Kiminami

Nanosized spinel nickel ferrite particles have attracted considerable attention and efforts continue to investigate them for their technological importance to the microwave industries, high speed digital tap or disk recording, repulsive suspension for use in levitated railway systems, ferrofluids, catalysis and magnetic refrigeration systems. Nanosize nickel ferrite powders (NiFe2O4) have been prepared by combustion reaction using nitrates and urea as fuel. The resulting powders were characterized by X-ray diffraction (XRD), BET, and transmission electron microscopy (TEM). The results showed nanosize nickel ferrite powders with high specific surface area (55.21 m2/g). The powders showed extensive XRD line broadening and the crystallite size calculated from the XRD line broadening was 18.0 nm. The samples were uniaxially compacted by dry pressing, sintered at 1200°C/2h and characterized by bulk density, SEM and magnetic properties measurements. The samples showed uniform microstructures with grain size of 4.45 μm, maximum flux density of 0.18T, field coercive of the 488 A/m, and hysteresis loss of 47.58 W/kg.

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Alice Reznickova Mantlikova ◽  
Jiri Plocek ◽  
Barbara Pacakova ◽  
Simona Kubickova ◽  
Ondrej Vik ◽  
...  

We succeeded in the preparation of CoFe2O4/CeO2 nanocomposites with very high specific surface area (up to 264 g/m2). First, highly crystalline nanoparticles (NPs) of CoFe2O4 (4.7 nm) were prepared by hydrothermal method in water-alcohol-oleic acid system. The oleate surface coating was subsequently modified by ligand exchange to citrate. Then the NPs were embedded in CeO2 using heterogeneous precipitation from diluted Ce3+ sulphate solution. Dried samples were characterized by Powder X-Ray Diffraction, Energy Dispersive X-Ray Analysis, Scanning and Transmission Electron Microscopy, Mössbauer Spectroscopy, and Brunauer-Emmett-Teller method. Moreover, detailed investigation of magnetic properties of the bare NPs and final composite was carried out. We observed homogeneous embedding of the magnetic NPs into the CeO2 without significant change of their size and magnetic properties. We have thus demonstrated that the proposed synthesis method is suitable for preparation of extremely fine CeO2 nanopowders and their nanocomposites with NPs. The morphology and magnetic nature of the obtained nanocomposites make them a promising candidate for magnetoresponsive catalysis.


2010 ◽  
Vol 654-656 ◽  
pp. 1106-1109
Author(s):  
Ya Qiong He ◽  
Chang Hui Mao ◽  
Jian Yang

Nanocrystalline Fe-Co alloy powders, which were prepared by high-energy mechanical milling, were nitrided under the mixing gas of NH3/H2 in the temperature range from 380°C to 510°C. X-ray diffraction (XRD) was used to analyze the grain size and reaction during the processing. The magnetic properties of the nitrided powders were measured by Vibrating Sample Magnetometer (VSM). The results show that with the appearance of Fe4N phase after nitride treatment, and the grain-size of FeCo phase decreases with the increase of nitridation temperature between 380°C to 450°C.The saturation magnetization of nitrided alloy powder treated at 480°C is about 18% higher than that of the initial Fe-Co alloy powder, accompanied by the reduction of the coercivity. Transmission electron microscope (TEM) was used, attempting to further analyze the effect of Fe4N phase on microstructure and magnetic properties of the powder mixtures.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 926
Author(s):  
Shamim Ahmed Hira ◽  
Mohammad Yusuf ◽  
Dicky Annas ◽  
Hu Shi Hui ◽  
Kang Hyun Park

Activated carbon (AC) was fabricated from carrot waste using ZnCl2 as the activating agent and calcined at 700 °C for 2 h in a tube furnace. The as-synthesized AC was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analysis; the results revealed that it exhibited a high specific surface area and high porosity. Moreover, this material displayed superior catalytic activity for the degradation of toxic Rhodamine B (RhB) dye. Rate constant for the degradation of RhB was ascertained at different experimental conditions. Lastly, we used the Arrhenius equation and determined that the activation energy for the decomposition of RhB using AC was approximately 35.9 kJ mol−1, which was very low. Hopefully it will create a great platform for the degradation of other toxic dye in near future.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Guiyun Yi ◽  
Baolin Xing ◽  
Jianbo Jia ◽  
Liwei Zhao ◽  
Yuanfeng Wu ◽  
...  

Macroporous TiO2photocatalyst was synthesized by a facile nanocasting method using polystyrene (PS) spherical particles as the hard template. The synthesized photocatalyst was characterized by transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry-differential thermogravimetry (TG-DTG), X-ray diffraction (XRD), and N2-sorption. TEM, SEM, and XRD characterizations confirmed that the macroporous TiO2photocatalyst is composed of anatase phase. The high specific surface area of 87.85 m2/g can be achieved according to the N2-sorption analysis. Rhodamine B (RhB) was chosen as probe molecule to evaluate the photocatalytic activity of the TiO2catalysts. Compared with the TiO2materials synthesized in the absence of PS spherical template, the macroporous TiO2photocatalyst sintered at 500°C exhibits much higher activity on the degradation of RhB under the UV irradiation, which can be assigned to the well-structured macroporosity. The macroporous TiO2material presents great potential in the fields of environmental remediation and energy conversion and storage.


2010 ◽  
Vol 177 ◽  
pp. 32-36 ◽  
Author(s):  
An Rong Wang ◽  
Jian Li ◽  
Qing Mei Zhang ◽  
Hua Miao

Weak magnetic ZnFe2O4 nanoparticles were prepared by coprecipitation and treated with different concentrations of Fe(NO3)3 solution. Untreated and treated particles were studied using a vibrating sample magnetometer, transmission electron microscope, by X-ray diffraction, X-ray energy dispersive spectroscopy and X photoelectron spectroscopy. The results showed that, after treatment, the ZnFe2O4/γ-Fe2O3 forms disphase nanoparticles, with enlarged size, enhanced magnetic properties and with a surface parceled with Fe(NO3)3. The size of the particles and their magnetic properties are related to the concentration of the treatment solution. The particle size and magnetic properties could be controlled by controlling the concentration of treating solution, therefore nanoparticles can be more widely used.


2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


2004 ◽  
Vol 19 (10) ◽  
pp. 2905-2912 ◽  
Author(s):  
Tokeer Ahmad ◽  
Ashok K. Ganguli

Nanoparticles of barium orthotitanate (Ba2TiO4) was obtained using microemulsions (avoiding Ba-alkoxide). Powder x-ray diffraction studies of the powder after calcining at 800 °C resulted in a mixture of orthorhombic (70%) and monoclinic (30%) phases. The high-temperature orthorhombic form present at 800 °C was due to the small size of particles obtained by the reverse micellar route. Pure orthorhombic Ba2TiO4 was obtained on further sintering at 1000 °C with lattice parameters a = 6.101(2) Å, b =22.94(1) Å, c = 10.533(2) Å (space group, P21nb). The particle size obtained from x-ray line broadening studies and transmission electron microscopic studies was found to be 40–50 nm for the powder obtained after heating at 800 °C. Sintering at 1000 °C showed increase in grain size up to 150 nm. Our studies corroborate well with the presence of a martensitic transition in Ba2TiO4. The dielectric constant was found to be 40 for Ba2TiO4 (at 100 kHz) for samples sintered at 1000 °C. The dielectric loss obtained was low (0.06) at 100 kHz.


2012 ◽  
Vol 05 ◽  
pp. 841-846
Author(s):  
AMIR KEYVANARA ◽  
REZA GHOLAMIPOUR ◽  
SHAMSEDIN MIRDAMADI ◽  
FARZAD SHAHRI ◽  
HOSSEIN SEPEHRI AMIN

Melt spun ribbons of Co 64 Fe 4 Ni 2 B 19 Si 8 Cr 3 alloy have been prepared and the nanocrystallization process was carried out by the heat treatment of the as spun ribbons above the crystallization temperature. Structural studies of the samples have been performed by transmission electron microscopy and X-ray diffraction. Magnetic properties of the samples and magnetoimpedance measurements were investigated and it was revealed that magnetic properties and magnetoimpedance of the samples deteriorate by the formation of nanocrystalline phases.


Author(s):  
Jinlong Yu ◽  
Frederik Søndergaard-Pedersen ◽  
Aref Mamakhel ◽  
Paolo Lamagni ◽  
Bo Brummerstedt Iversen

Anatase TiO2 (a-TiO2) nanocrystals are vital in catalytic applications both as catalysts (e.g. photodegradation) and as a carrier material (e.g. NOx removal from exhaust). The synthesis of a-TiO2 nanocrystals and their properties have been heavily scrutinized, but there exists a clear gap between the scientific literature, and the scale and price expectation of industrial application. Here it is demonstrated that the industrially most attractive Ti precursor, titanyl sulfate (TiOSO4), can be combined with the green, scalable and fast supercritical flow method to produce phase pure and highly crystalline a-TiO2 nanoparticles with high specific surface area. Control of the nanocrystal morphology is important since it is known that certain facets substantially promote catalytic activity. It is, however, in itself challenging to determine nanocrystal morphology to provide a rational basis for the synthesis control. Here we advocate the use of advanced Rietveld refinement of powder X-ray diffraction data including anisotropic size broadening models in aiding to establish the sample three-dimensional morphology. This relatively quick and robust method assists in overcoming the often encountered ambiguity inherent in two-dimensional to three-dimensional reconstruction of selected particle morphologies with transmission electron microscopy and tomography techniques.


Sign in / Sign up

Export Citation Format

Share Document