scholarly journals Small Interfering RNA Targeted to ASPP2 Promotes Progression of Experimental Proliferative Vitreoretinopathy

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xiao-Li Chen ◽  
Yu-Jing Bai ◽  
Qin-Rui Hu ◽  
Shan-Shan Li ◽  
Lv-Zhen Huang ◽  
...  

Background. Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) is vital in proliferative vitreoretinopathy (PVR) development. Apoptosis-stimulating proteins of p53 (ASPP2) have recently been reported to participate in EMT. However, the role of ASPP2 in PVR pathogenesis has not been identified.Methods. Immunohistochemistry was used to investigate the expression of ASPP2 in epiretinal membranes of PVR patients. ARPE-19 cells were transfected with ASPP2-siRNA, followed with measurement of cell cytotoxicity, proliferation, and migration ability. EMT markers and related inflammatory and fibrosis cytokines were measured by western blot or flow cytometry. Additionally, PVR rat models were induced by intravitreal injection of ARPE-19 cells transfected with ASPP2-siRNA and evaluated accordingly.Results. Immunofluorescence analysis revealed less intense expression of ASPP2 in PVR membranes. ASPP2 knockdown facilitated the proliferation and migration of RPE cells and enhanced the expression of mesenchymal markers such as alpha smooth muscle actin, fibronectin, and ZEB1. Meanwhile, ASPP2-siRNA increased EMT-related and inflammatory cytokines, including TGF-β, CTGF, VEGF, TNF-α, and interleukins. PVR severities were more pronounced in the rat models with ASPP2-siRNA treatment.Conclusions. ASPP2 knockdown promoted EMT of ARPE-19 cellsin vitroand exacerbated the progression of experimental PVRin vivo, possibly via inflammatory and fibrosis cytokines.

2021 ◽  
pp. 1-8
Author(s):  
Haifeng Xia ◽  
Fang Hu ◽  
Liangbin Pan ◽  
Chengcheng Xu ◽  
Haitao Huang ◽  
...  

BACKGROUND: EC (esophageal cancer) is a common cancer among people in the world. The molecular mechanism of FAM196B (family with sequence similarity 196 member B) in EC is still unclear. This article aimed to clarify the role of FAM196B in EC. METHODS: The expression of FAM196B in EC tissues was detected using qRT-PCR. The prognosis of FAM196B in EC patients was determined by log-rank kaplan-Meier survival analysis and Cox regression analysis. Furthermore, shRNA was used to knockdown the expression of FAM196B in EC cell lines. MTT, wound healing assays and western blot were used to determine the role of FAM196B in EC cells. RESULTS: In our research, we found that the expression of FAM196B was up-regulated in EC tissues. The increased expression of FAM196B was significantly correlated with differentiation, lymph node metastasis, stage, and poor survival. The proliferation and migration of EC cells were inhibited after FAM196B-shRNA transfection in vitro and vivo. The western blot result showed that FAM196B could regulate EMT. CONCLUSION: These results suggested that FAM196B severs as an oncogene and promotes cell proliferation and migration in EC. In addition, FAM196B may be a potential therapeutic target for EC patients.


2012 ◽  
Vol 37 (6) ◽  
pp. 500-507 ◽  
Author(s):  
Anne Katrine Kehler ◽  
Cammilla Andersen ◽  
Jens Rovelt Andreasen ◽  
Rupali Vohra ◽  
Nanna Junker ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9618
Author(s):  
Jérémie Canonica ◽  
Min Zhao ◽  
Tatiana Favez ◽  
Emmanuelle Gelizé ◽  
Laurent Jonet ◽  
...  

Glucocorticoids are amongst the most used drugs to treat retinal diseases of various origins. Yet, the transcriptional regulations induced by glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) activation in retinal pigment epithelium cells (RPE) that form the outer blood–retina barrier are unknown. Levels of endogenous corticoids, ligands for MR and GR, were measured in human ocular media. Human RPE cells derived from induced pluripotent stem cells (iRPE) were used to analyze the pan-transcriptional regulations induced by aldosterone—an MR-specific agonist, or cortisol or cortisol + RU486—a GR antagonist. The retinal phenotype of transgenic mice that overexpress the human MR (P1.hMR) was analyzed. In the human eye, the main ligand for GR and MR is cortisol. The iRPE cells express functional GR and MR. The subset of genes regulated by aldosterone and by cortisol + RU-486, and not by cortisol alone, mimics an imbalance toward MR activation. They are involved in extracellular matrix remodeling (CNN1, MGP, AMTN), epithelial–mesenchymal transition, RPE cell proliferation and migration (ITGB3, PLAUR and FOSL1) and immune balance (TNFSF18 and PTX3). The P1.hMR mice showed choroidal vasodilation, focal alteration of the RPE/choroid interface and migration of RPE cells together with RPE barrier function alteration, similar to human retinal diseases within the pachychoroid spectrum. RPE is a corticosteroid-sensitive epithelium. MR pathway activation in the RPE regulates genes involved in barrier function, extracellular matrix, neural regulation and epithelial differentiation, which could contribute to retinal pathology.


Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 147 ◽  
Author(s):  
Madhu Sudhana Saddala ◽  
Anton Lennikov ◽  
Anthony Mukwaya ◽  
Hu Huang

Age-related macular degeneration (AMD) is the most common cause of irreversible blindness in the elderly population. In our previous studies, we found that deficiency of CXCR5 causes AMD-like pathological phenotypes in mice, characterized by abnormalities and dysfunction of the retinal pigment epithelium (RPE) cells. The abnormalities included abnormal cellular shape and impaired barrier function. In the present study, primary RPE cells were derived separately from CXCR5 knockout (KO) mice and from C57BL6 wild type (WT). The isolated primary cells were cultured for several days, and then total RNA was isolated and used for library preparation, sequencing, and the resultant raw data analyzed. Relative to the WT, a total of 1392 differentially expressed genes (DEG) were identified. Gene ontology analysis showed various biological processes, cellular components, and molecular functions were enriched. Pathway enrichment analysis revealed several pathways, including the PI3K-Akt signaling, mTOR signaling, FoxO, focal adhesion, endocytosis, ubiquitin-mediated proteolysis, TNFα-NF-kB Signaling, adipogenesis genes, p53 signaling, Ras, autophagy, epithelial–mesenchymal transition (EMT), and mitochondrial pathway. This study explores molecular signatures associated with deficiency of CXCR5 in RPE cells. Many of these signatures are important for homeostasis of this tissue. The identified pathways and genes require further evaluation to better understand the pathophysiology of AMD.


2020 ◽  
Vol 24 (14) ◽  
pp. 7959-7967
Author(s):  
Wei Jiang ◽  
Yan‐Ling Liang ◽  
Yang Liu ◽  
Yu‐Yan Chen ◽  
Shu‐Ting Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document