scholarly journals Revisiting the Practicality of Search on Encrypted Data: From the Security Broker’s Perspective

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Peiyi Han ◽  
Chuanyi Liu ◽  
Binxing Fang ◽  
Guofeng Wang ◽  
Xiaobao Song ◽  
...  

The primary business challenge for the customers to use outsourced computation and storage is the loss of data control and security. So encryption will become a commodity in the near future. There is big diffusion with the above scenario: take advantage of current application’s full functionalities at the same time ensuring their sensitive data remains protected and under customers’ control. Prior works have achieved effective progress towards satisfying both sides. But there are still some technical challenges, such as supporting file or data-stream based applications and supporting full-text and advanced searches. In this paper, a novel security broker based encrypted data search scheme, called Enc-YUN, is proposed, which transparently builds a reverse index at the security broker when the data flow is transmitted to the cloud. And search firstly takes place on the index, in which the mapping structure corresponds to and retrieves the very encrypted data in the cloud on behalf of the client. With this scheme, updated-to-date full-text search techniques can be easily integrated to carry out the most advanced search functionalities, at the same time, maintaining the strongest levels of data protection from curious providers or third parties. Experimental results show that Enc-YUN is effective with broad categories of cloud applications, and the performance overhead induced is minor and acceptable according to user’s perceptual experience.

2022 ◽  
Vol 54 (9) ◽  
pp. 1-37
Author(s):  
Asma Aloufi ◽  
Peizhao Hu ◽  
Yongsoo Song ◽  
Kristin Lauter

With capability of performing computations on encrypted data without needing the secret key, homomorphic encryption (HE) is a promising cryptographic technique that makes outsourced computations secure and privacy-preserving. A decade after Gentry’s breakthrough discovery of how we might support arbitrary computations on encrypted data, many studies followed and improved various aspects of HE, such as faster bootstrapping and ciphertext packing. However, the topic of how to support secure computations on ciphertexts encrypted under multiple keys does not receive enough attention. This capability is crucial in many application scenarios where data owners want to engage in joint computations and are preferred to protect their sensitive data under their own secret keys. Enabling this capability is a non-trivial task. In this article, we present a comprehensive survey of the state-of-the-art multi-key techniques and schemes that target different systems and threat models. In particular, we review recent constructions based on Threshold Homomorphic Encryption (ThHE) and Multi-Key Homomorphic Encryption (MKHE). We analyze these cryptographic techniques and schemes based on a new secure outsourced computation model and examine their complexities. We share lessons learned and draw observations for designing better schemes with reduced overheads.


Author(s):  
Namik Delilovic

Searching for contents in present digital libraries is still very primitive; most websites provide a search field where users can enter information such as book title, author name, or terms they expect to be found in the book. Some platforms provide advanced search options, which allow the users to narrow the search results by specific parameters such as year, author name, publisher, and similar. Currently, when users find a book which might be of interest to them, this search process ends; only a full-text search or references at the end of the book may provide some additional pointers. In this chapter, the author is going to give an example of how a user could permanently get recommendations for additional contents even while reading the article, using present machine learning and artificial intelligence techniques.


2017 ◽  
Author(s):  
Hani Tuasikal

Latar belakang: Pelaksanaan handover di RS berkiatan erat dengan dengan peran perawat dalam menggunakan metode pada saat pergantian shift. Oleh karena itu, untuk meningkatkan komunikasi diantara perawat dibutuhkan metode-metode yang efektif dalam metode-melakukan handover. Adapun metode yang digunakan adalah verbal, dengan catatan, melalui telepon dan SBAR. Metode: Penelusuran literature data base dari EBSCO, sciendirect, google search dan PubMed dari tahun 2005-2015 dilakukan menggunakan advanced search keyword yang dipilih dalam pencarian adalah handover communication, patien savety. Pencarian dibatasi pada tahun 2005-2015, full text, dan harus yang berbahasa inggris. Setelah dilakukan search ditemukan 171 artikel pada sciendirect, 23 artikel pada PubMed, dan 32 artikel pada ebscho dan yang sesuai dengan kriteria inklusi adalah 6 artikel. 6 artikel tersebut sesuai dengan kriteria study yaitu RCTs, Cohor, Case Study dan Systematic Review. Responden dalam artikel ini adalah perawat yang melakukan handover. Intervensi yang dilakukan adalah metode-metode handover. Outcome meningkatkan komunikasi antar perawat. Hasil: temuan berupa 6 artikel hasil pembahasan menunjukan bahwa metode handover dengan SBAR sangat efektif untuk meningkatkan komunikasi antar perawat. Kesimpulan: Metode SBAR sangat efektif digunakan dalam handover. Dengan metode ini, dapat mengoptimalkan komunikasi antar perawat dalam melakukan handover di setiap pergantian shif.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1367
Author(s):  
Raghida El El Saj ◽  
Ehsan Sedgh Sedgh Gooya ◽  
Ayman Alfalou ◽  
Mohamad Khalil

Privacy-preserving deep neural networks have become essential and have attracted the attention of many researchers due to the need to maintain the privacy and the confidentiality of personal and sensitive data. The importance of privacy-preserving networks has increased with the widespread use of neural networks as a service in unsecured cloud environments. Different methods have been proposed and developed to solve the privacy-preserving problem using deep neural networks on encrypted data. In this article, we reviewed some of the most relevant and well-known computational and perceptual image encryption methods. These methods as well as their results have been presented, compared, and the conditions of their use, the durability and robustness of some of them against attacks, have been discussed. Some of the mentioned methods have demonstrated an ability to hide information and make it difficult for adversaries to retrieve it while maintaining high classification accuracy. Based on the obtained results, it was suggested to develop and use some of the cited privacy-preserving methods in applications other than classification.


2013 ◽  
Vol 284-287 ◽  
pp. 3428-3432 ◽  
Author(s):  
Yu Hsiu Huang ◽  
Richard Chun Hung Lin ◽  
Ying Chih Lin ◽  
Cheng Yi Lin

Most applications of traditional full-text search, e.g., webpage search, are offline which exploit text search engine to preview the texts and set up related index. However, applications of online realtime full-text search, e.g., network Intrusion detection and prevention systems (IDPS) are too hard to implementation by using commodity hardware. They are expensive and inflexible for more and more occurrences of new virus patterns and the text cannot be previewed and the search must be complete realtime online. Additionally, IDPS needs multi-pattern matching, and then malicious packets can be removed immediately from normal ones without degrading the network performance. Considering the problem of realtime multi-pattern matching, we implement two sequential algorithms, Wu-Manber and Aho-Corasick, respectively over GPU parallel computation platform. Both pattern matching algorithms are quite suitable for the cases with a large amount of patterns. In addition, they are also easier extendable over GPU parallel computation platform to satisfy realtime requirement. Our experimental results show that the throughput of GPU implementation is about five to seven times faster than CPU. Therefore, pattern matching over GPU offers an attractive solution of IDPS to speed up malicious packets detection among the normal traffic by considering the lower cost, easy expansion and better performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Hua Dai ◽  
Hui Ren ◽  
Zhiye Chen ◽  
Geng Yang ◽  
Xun Yi

Outsourcing data in clouds is adopted by more and more companies and individuals due to the profits from data sharing and parallel, elastic, and on-demand computing. However, it forces data owners to lose control of their own data, which causes privacy-preserving problems on sensitive data. Sorting is a common operation in many areas, such as machine learning, service recommendation, and data query. It is a challenge to implement privacy-preserving sorting over encrypted data without leaking privacy of sensitive data. In this paper, we propose privacy-preserving sorting algorithms which are on the basis of the logistic map. Secure comparable codes are constructed by logistic map functions, which can be utilized to compare the corresponding encrypted data items even without knowing their plaintext values. Data owners firstly encrypt their data and generate the corresponding comparable codes and then outsource them to clouds. Cloud servers are capable of sorting the outsourced encrypted data in accordance with their corresponding comparable codes by the proposed privacy-preserving sorting algorithms. Security analysis and experimental results show that the proposed algorithms can protect data privacy, while providing efficient sorting on encrypted data.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Run Xie ◽  
Chanlian He ◽  
Dongqing Xie ◽  
Chongzhi Gao ◽  
Xiaojun Zhang

With the advent of cloud computing, data privacy has become one of critical security issues and attracted much attention as more and more mobile devices are relying on the services in cloud. To protect data privacy, users usually encrypt their sensitive data before uploading to cloud servers, which renders the data utilization to be difficult. The ciphertext retrieval is able to realize utilization over encrypted data and searchable public key encryption is an effective way in the construction of encrypted data retrieval. However, the previous related works have not paid much attention to the design of ciphertext retrieval schemes that are secure against inside keyword-guessing attacks (KGAs). In this paper, we first construct a new architecture to resist inside KGAs. Moreover we present an efficient ciphertext retrieval instance with a designated tester (dCRKS) based on the architecture. This instance is secure under the inside KGAs. Finally, security analysis and efficiency comparison show that the proposal is effective for the retrieval of encrypted data in cloud computing.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Griffani Megiyanto Rahmatullah ◽  
Muhammad Ayat ◽  
Wirmanto Suteddy

Sistem keamanan rumah merupakan implementasi yang harus dilakukan untuk meningkatkan keamanan dari kejadian yang tidak diinginkan. Beberapa implementasi hanya memberikan notifikasi sederhana berupa alarm dan tidak menjadi bukti yang kuat apabila terjadi pencurian. Salah satu solusi yang dilakukan adalah penempatan kamera untuk memantau keamanan rumah secara real time diintegrasikan dengan penyimpanan cloud. Bluemix merupakan salah satu provider untuk aplikasi cloud yang memiliki layanan pengolahan dan penyimpanan data, akses aplikasi mobile, pengawasan serta Internet of Things (IoT). Sistem yang diimplementasikan adalah integrasi Raspberry Pi dengan layanan Bluemix untuk melakukan pengawasan keamanan rumah dan memberikan notifikasi kepada pengguna. Sistem mendeteksi jarak menggunakan sensor HC-SR04 terhadap objek dan apabila jarak melewati acuan, hal tersebut adalah indikasi terjadinya pencurian. Berikutnya sistem akan menyalakan buzzer sebagai keluaran suara dan mengaktifkan kamera untuk mengambil gambar lalu diunggah ke object storage Bluemix. Langkah berikutnya yaitu layanan IBM push notification memberikan notifikasi ke perangkat Android pengguna. Pengujian dilakukan dengan menghalangi pembacaan sensor sehingga terjadi indikasi pencurian. Hasilnya adalah sistem berhasil menyalakan buzzer, mengambil gambar lalu diunggah ke Bluemix, dan notifikasi berhasil masuk pada Android. Notifikasi diterima oleh file browser pada perangkat Android dan dilakukan sinkronisasi dengan object storage untuk melakukan pengunduhan berkas gambar yang telah diunggah sebelumnya.Kata kunci: Bluemix, Raspberry Pi, object sorage, IBM push notification Home security system is an implementation that needs to be done to improve the security of unwanted events. Some implementations only provide a simple notification such as alarm and cannot become strong evidence in case of theft. One of the solutions is camera placement to monitor home security in real time integrated with cloud storage. Bluemix is a provider for cloud applications that have data processing and storage services, mobile application access, monitoring and Internet of Things (IoT). System implemented was integration of Raspberry Pi with Bluemix services to conduct home security surveillance and provide notification to user. System detected distance using HC-SR04 sensor to object and if distance passes the reference, it was an indication of theft. Next, system will turned on buzzer as a sound output and activating the camera to take picture and uploaded to Bluemix Object Storage. Next step was IBM push notification service giving notification to user's Android device. The testing was done by blocking the sensor readings so that there was an indication of theft. The result was system succeeded in turning on the buzzer, taking pictures, uploading pictures to Bluemix, and notification successfully logged on Android. Notifications are received by the file browser on Android device and synchronized with object storage to download image files that have been uploaded previously.Keywords: Bluemix, Raspberry Pi, object storage, IBM push notification 


Sign in / Sign up

Export Citation Format

Share Document