scholarly journals IWKNN: An Effective Bluetooth Positioning Method Based on Isomap and WKNN

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Qi Wang ◽  
Yingying Feng ◽  
Xiangde Zhang ◽  
Yanrui Sun ◽  
Xiaojun Lu

Recently, Bluetooth-based indoor positioning has become a hot research topic. However, the instability of Bluetooth RSSI (Received Signal Strength Indicator) promotes a huge challenge in localization accuracy. To improve the localization accuracy, this paper measures the distance of RSSI vectors on their low-dimensional manifold and proposes a novel positioning method IWKNN (Isomap-based Weighted K-Nearest Neighbor). The proposed method firstly uses Isomap to generate low-dimensional embedding for RSSI vectors. Then, the distance of two given RSSI vectors is measured by Euclidean distance of their low-dimensional embeddings. Finally, the position is calculated by WKNN. Experiment indicates that the proposed approach is more robust and accurate.

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Li Jiang ◽  
Shunsheng Guo

The high-dimensional features of defective bearings usually include redundant and irrelevant information, which will degrade the diagnosis performance. Thus, it is critical to extract the sensitive low-dimensional characteristics for improving diagnosis performance. This paper proposes modified kernel marginal Fisher analysis (MKMFA) for feature extraction with dimensionality reduction. Due to its outstanding performance in enhancing the intraclass compactness and interclass dispersibility, MKMFA is capable of effectively extracting the sensitive low-dimensional manifold characteristics beneficial to subsequent pattern classification even for few training samples. A MKMFA- based fault diagnosis model is presented and applied to identify different bearing faults. It firstly utilizes MKMFA to directly extract the low-dimensional manifold characteristics from the raw time-series signal samples in high-dimensional ambient space. Subsequently, the sensitive low-dimensional characteristics in feature space are inputted into K-nearest neighbor classifier so as to distinguish various fault patterns. The four-fault-type and ten-fault-severity bearing fault diagnosis experiment results show the feasibility and superiority of the proposed scheme in comparison with the other five methods.


2017 ◽  
Vol 19 (12) ◽  
pp. 125012 ◽  
Author(s):  
Carlos Floyd ◽  
Christopher Jarzynski ◽  
Garegin Papoian

2020 ◽  
Author(s):  
Wei Guo ◽  
Jie J. Zhang ◽  
Jonathan P. Newman ◽  
Matthew A. Wilson

AbstractLatent learning allows the brain the transform experiences into cognitive maps, a form of implicit memory, without reinforced training. Its mechanism is unclear. We tracked the internal states of the hippocampal neural ensembles and discovered that during latent learning of a spatial map, the state space evolved into a low-dimensional manifold that topologically resembled the physical environment. This process requires repeated experiences and sleep in-between. Further investigations revealed that a subset of hippocampal neurons, instead of rapidly forming place fields in a novel environment, remained weakly tuned but gradually developed correlated activity with other neurons. These ‘weakly spatial’ neurons bond activity of neurons with stronger spatial tuning, linking discrete place fields into a map that supports flexible navigation.


2018 ◽  
Vol 21 (5) ◽  
pp. 824-837 ◽  
Author(s):  
Jian Huang ◽  
Gordon McTaggart-Cowan ◽  
Sandeep Munshi

This article describes the application of a modified first-order conditional moment closure model used in conjunction with the trajectory-generated low-dimensional manifold method in large-eddy simulation of pilot ignited high-pressure direct injection natural gas combustion in a heavy-duty diesel engine. The article starts with a review of the intrinsic low-dimensional manifold method for reducing detailed chemistry and various formulations for the construction of such manifolds. It is followed by a brief review of the conditional moment closure method for modelling the interaction between turbulence and combustion chemistry. The high computational cost associated with the direct implementation of the basic conditional moment closure model was discussed. The article then describes the formulation of a modified approach to solve the conditional moment closure equation, whose reaction source terms for the conditional mass fractions for species were obtained by projecting the turbulent perturbation onto the reaction manifold. The main model assumptions were explained and the resulting limitations were discussed. A numerical experiment was conducted to examine the validity the model assumptions. The model was then implemented in a combustion computational fluid dynamics solver developed on an open-source computational fluid dynamics platform. Non-reactive jet simulations were first conducted and the results were compared to the experimental measurement from a high-pressure visualization chamber to verify that the jet penetration under engine relevant conditions was correctly predicted. The model was then used to simulate natural gas combustion in a heavy-duty diesel engine equipped with a high-pressure direct injection system. The simulation results were compared with the experimental measurement from a research engine to verify the accuracy of the model for both the combustion rate and engine-out emissions.


2020 ◽  
Vol 371 ◽  
pp. 108-123 ◽  
Author(s):  
Ruiqiang He ◽  
Xiangchu Feng ◽  
Weiwei Wang ◽  
Xiaolong Zhu ◽  
Chunyu Yang

Author(s):  
Parag Jain

Unsupervised metric learning has been generally studied as a byproduct of dimensionality reduction or manifold learning techniques. Manifold learning techniques like Diusion maps, Laplacian eigenmaps has a special property that embedded space is Euclidean. Although laplacian eigenmaps can provide us with some (dis)similarity information it does not provide with a metric which can further be used on out-of-sample data. On other hand supervised metric learning technique like ITML which can learn a metric needs labeled data for learning. In this work propose methods for incremental unsupervised metric learning. In rst approach Laplacian eigenmaps is used along with Information Theoretic Metric Learning(ITML) to form an unsupervised metric learning method. We rst project data into a low dimensional manifold using Laplacian eigenmaps, in embedded space we use euclidean distance to get an idea of similarity between points. If euclidean distance between points in embedded space is below a threshold t1 value we consider them as similar points and if it is greater than a certain threshold t2 we consider them as dissimilar points. Using this we collect a batch of similar and dissimilar points which are then used as a constraints for ITML algorithm and learn a metric. To prove this concept we have tested our approach on various UCI machine learning datasets. In second approach we propose Incremental Diusion Maps by updating SVD in a batch-wise manner.


Sign in / Sign up

Export Citation Format

Share Document