scholarly journals Facile Synthesis and Special Phase Transformation of Hydrophilic Iron Oxides Nanoparticles

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Liqiao Chen ◽  
Yunqian Long ◽  
Zhe Leng ◽  
Jinfei Hu ◽  
Xuan Yu ◽  
...  

Superparamagnetic iron oxide nanoparticles (SPIONs), γ-Fe2O3, with hydrophilic surfaces are fabricated in ethylene glycol solutions, without surfactant or additive, by solvothermal process from α-Fe2O3 nanoparticle as precursors. With the addition of a trace of hydrazine hydrate, the cubic phase Fe3O4 nanoparticles are obtained instead of γ-Fe2O3. The saturation magnetization value of γ-Fe2O3 nanoparticles is up to 74.3 emu/g. This study provides a low cost, safe, and universal route to serve as excellent biocompatibility magnetic core for future applications in biomedical, agriculture, and horticulture applications.

RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 99948-99959 ◽  
Author(s):  
Ganeshlenin Kandasamy ◽  
Sreeraj Surendran ◽  
Anindita Chakrabarty ◽  
S. N. Kale ◽  
Dipak Maity

We report a one-step facile synthesis of novel water-soluble and functionalized SPIONs, which could be promising candidates for cancer theranostics.


2014 ◽  
Vol 38 (9) ◽  
pp. 4344-4350 ◽  
Author(s):  
Elias Mitchell ◽  
Ram K. Gupta ◽  
Kwadwo Mensah-Darkwa ◽  
Dhananjay Kumar ◽  
Karthik Ramasamy ◽  
...  

The TEM image of the synthesized iron oxide nanocrystals.


Nanomedicine ◽  
2019 ◽  
Vol 14 (17) ◽  
pp. 2293-2313
Author(s):  
Brunno RF Verçoza ◽  
Robson R Bernardo ◽  
Arbélio Pentón-Madrigal ◽  
João P Sinnecker ◽  
Juliany CF Rodrigues ◽  
...  

Aim: The primary goal of this work was to synthesize low-cost superparamagnetic iron oxide nanoparticles (SPIONs) with the aid of coconut water and evaluate the ability of macrophages to internalize them. Our motivation was to determine potential therapeutic applications in drug-delivery systems associated with magnetic hyperthermia. Materials & methods: We used the following characterization techniques: x-ray and electron diffractions, electron microscopy, spectrometry and magnetometry. Results: The synthesized SPIONs, roughly 4 nm in diameter, were internalized by macrophages, likely via endocytic/phagocytic pathways. They were randomly distributed throughout the cytoplasm and mainly located in membrane-bound compartments. Conclusion: Nanoparticles presented an elevated intrinsic loss power value and were not cytotoxic to mammalian cells. Thus, we suggest that low-cost SPIONs have great therapeutic potential.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


Sign in / Sign up

Export Citation Format

Share Document