scholarly journals The Effect of Schinus terebinthifolius Raddi (Anacardiaceae) Bark Extract on Histamine-Induced Paw Edema and Ileum Smooth Muscle Contraction

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Paulo Alexandre Nunes-Neto ◽  
Tadeu José da Silva Peixoto-Sobrinho ◽  
Edilson Dantas da Silva Júnior ◽  
Jamilka Leopoldina da Silva ◽  
Alisson Rodrigo da Silva Oliveira ◽  
...  

Schinus terebinthifolius Raddi (Anacardiaceae), popularly known as red aroeira, is used in traditional medicine to treat inflammatory, gastric, and respiratory disorders. The aim of this study was to evaluate the antihistaminic activity of S. terebinthifolius (St) bark extract by using in vivo and in vitro experimental models. The effects of St were investigated on contractions induced by histamine, carbachol, and potassium chloride in isolated guinea pig ileum. St was also studied in response to hind paw edema induced by histamine in rats. Experiments revealed that although St (250, 500, and 1,000 µg/mL) reduced the histamine-induced contractions by 9.1±1.8, 50.2±2.0, and 68.9±2.0%, respectively, it did not inhibit contractions induced by carbachol or KCl. The association of St (250 and 500 µg/mL) with hydroxyzine, an H1-antihistamine (0.125 and 0.250 µM), increased the inhibitory effect to 67.0±3.2 and 85.1±2.1%, respectively. Moreover, St (100, 200, and 400 mg/kg) decreased paw edema from its peak by 33.9, 48.4, and 54.8%, respectively, whereas hydroxyzine (70 mg/kg) inhibited the peak edema by 56.5%. Altogether, the results suggest that the bark extract of S. terebinthifolius has an antihistaminic effect (H1).

1985 ◽  
Vol 68 (s10) ◽  
pp. 147s-150s ◽  
Author(s):  
S. Thom ◽  
J. Calvete ◽  
R. Hayes ◽  
G. Martin ◽  
P. Sever

1. The effects of compounds with α2-agonist and α2-antagonist properties on human forearm blood flow and on isolated human arterial segments have been studied. 2. The findings from these studies in vivo and in vitro did not provide evidence in support of the hypothesis that postsynaptic α2-receptors mediate smooth muscle contraction in the tissues under investigation. 3. The constriction of the forearm vascular bed in response to low intra-arterial doses of idazoxan (RX 781094), an α2-antagonist, provides evidence for a physiological role for a presynaptic α2 autoregulatory mechanism. 4. The variability of the forearm vascular responses to higher doses of idazoxan highlights the pitfalls that may have misled previous authors in their interpretation of the results of similar studies. A U-shaped dose-response curve to compounds with mixed α2-and α1-antagonist properties may be constructed, which emphasizes the importance of the dose-dependent selectivity of these antagonists at α2- and α1-receptors. 5. The effect of idazoxan on the responses of arterial segments in vitro to exogenous catecholamines was dependent on the integrity of the endothelium, and provides evidence that α2-receptors may mediate release of the endothelium-derived relaxing factor.


2000 ◽  
Vol 278 (4) ◽  
pp. C718-C726 ◽  
Author(s):  
Jason C. Hedges ◽  
Brian C. Oxhorn ◽  
Michael Carty ◽  
Leonard P. Adam ◽  
Ilia A. Yamboliev ◽  
...  

Phosphorylation of h-caldesmon has been proposed to regulate airway smooth muscle contraction. Both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases phosphorylate h-caldesmon in vitro. To determine whether both enzymes phosphorylate caldesmon in vivo, phosphorylation-site-selective antibodies were used to assay phosphorylation of MAP kinase consensus sites. Stimulation of cultured tracheal smooth muscle cells with ACh or platelet-derived growth factor increased caldesmon phosphorylation at Ser789 by about twofold. Inhibiting ERK MAP kinase activation with 50 μM PD-98059 blocked agonist-induced caldesmon phosphorylation completely. Inhibiting p38 MAP kinases with 25 μM SB-203580 had no effect on ACh-induced caldesmon phosphorylation. Carbachol stimulation increased caldesmon phosphorylation at Ser789 in intact tracheal smooth muscle, which was blocked by the M2 antagonist AF-DX 116 (1 μM). AF-DX 116 inhibited carbachol-induced isometric contraction by 15 ± 1.4%, thus dissociating caldesmon phosphorylation from contraction. Activation of M2 receptors leads to activation of ERK MAP kinases and phosphorylation of caldesmon with little or no functional effect on isometric force. P38 MAP kinases are also activated by muscarinic agonists, but they do not phosphorylate caldesmon in vivo.


1992 ◽  
Vol 263 (6) ◽  
pp. H1880-H1887 ◽  
Author(s):  
R. M. Elias ◽  
J. Eisenhoffer ◽  
M. G. Johnston

Studies with a sheep isolated duct preparation in vivo demonstrated that the route of administration of hemoglobin was important in demonstrating its inhibitory effect on lymphatic pumping. With autologous oxyhemoglobin administered intravenously (final plasma concentration 5 x 10(-5) M), pumping was not inhibited. However, the addition of oxyhemoglobin (5 x 10(-5) M) into the reservoir (lumen of the duct) resulted in > 95% inhibition of pumping. The extraluminal administration of oxyhemoglobin (10(-5) M) to bovine mesenteric lymphatics in vitro resulted in a 40% inhibition of pumping, whereas the introduction of oxyhemoglobin (10(-5) M) into the lumen of the vessels suppressed pumping 95%. In vessels mechanically denuded of endothelium, intraluminal oxyhemoglobin inhibited pumping 50%. These results suggested that oxyhemoglobin depressed pumping through an effect on both smooth muscle and endothelium. Once pumping was inhibited with oxyhemoglobin administration, stimulation of the duct with elevations in transmural pressure restored pumping activity when endothelial cells were present. However, in the absence of endothelium, pumping decreased with increases in distending pressures. We conclude that oxyhemoglobin has a direct inhibitory effect on lymphatic smooth muscle. The ability of oxyhemoglobin to alter the pressure range over which the lymph pump operates appears to be dependent on an intact endothelium.


2002 ◽  
Vol 93 (4) ◽  
pp. 1296-1300 ◽  
Author(s):  
Debra J. Turner ◽  
Peter B. Noble ◽  
Matthew P. Lucas ◽  
Howard W. Mitchell

Increased smooth muscle contractility or reduced smooth muscle mechanical loads could account for the excessive airway narrowing and hyperresponsiveness seen in asthma. These mechanisms were investigated by using an allergen-induced porcine model of airway hyperresponsiveness. Airway narrowing to electric field stimulation was measured in isolated bronchial segments, over a range of transmural pressures (0–20 cmH2O). Contractile responses to ACh were measured in bronchial segments and in isolated tracheal smooth muscle strips isolated from control and test (ovalbumin sensitized and challenged) pigs. Test airways narrowed less than controls ( P < 0.0001). Test pigs showed reduced contractility to ACh, both in isolated bronchi ( P < 0.01) and smooth muscle strips ( P < 0.01). Thus isolated airways from pigs exhibiting airway hyperresponsiveness in vivo are hyporesponsive in vitro. The decreased narrowing in bronchi from hyperresponsive pigs may be related to decreased smooth muscle contractility. These data suggest that mechanisms external to the airway wall may be important to the hyperresponsive nature of sensitized lungs.


2010 ◽  
Vol 2 ◽  
pp. OED.S3612 ◽  
Author(s):  
Latif Abdul ◽  
Razique Abdul ◽  
R.R. Sukul ◽  
Siddiqui Nazish

The Unani eye drop is an ophthalmic formulation prepared for its beneficial effects in the inflammatory and allergic conditions of the eyes. In the present study, the Unani eye drop formulation was prepared and investigated for its anti-inflammatory and antihistaminic activity, using in vivo and in vitro experimental models respectively. The Unani eye drop formulation exhibited significant anti-inflammatory activity in turpentine liniment-induced ocular inflammation in rabbits. The preparation also showed antihistaminic activity in isolated guinea-pig ileum. The anti-inflammatory and antihistaminic activity of eye drop may be due to presence of active ingredients in the formulation. Although there are many drugs in Unani repository which are mentioned in classical books or used in Unani clinical practice effectively in treatment of eye diseases by various Unani physicians. Inspite of the availability of vast literature, there is a dearth of commercial Unani ocular preparations. So, keeping this in mind, the eye drop formulation was prepared and its anti-inflammatory and antihistaminic activity was carried out in animal models. Thus, in view of the importance of alternative anti-inflammatory and antiallergic drugs, it becomes imperative to bring these indigenous drugs to the front foot and evaluate their activities.


1975 ◽  
Vol 229 (1) ◽  
pp. 8-12 ◽  
Author(s):  
HS Solomon ◽  
NK Hollenberg

The mechanism by which mercuric ion (HgCl2) induces contraction of vascular smooth muscle was defined in the kidney of anesthetized dogs and in rabbit aortic strips. In vivo, HgCl2 injected into the renal artery induced a dose-related reduction in renal blood flow (electromagnetic flowmeter) and glomerular filtration rate (creatinine clearance). An intra-arterial infusion of phenoxybenzamine (POB) significantly reduced the vascular response to HgCl2 (P less than 0.001). In vitro, alpha-adrenergic blockade with phentolamine and POB prevented mercury-induced contraction, whereas agents that block serotonin, histamine, acetylcholine, and angiotensin did not do so. Norepinephrine receptor "protection" from phenoxybenzamine blockade sustained the response to HgCl2. Reserpine pretreatment produced a parallel reduction in the response of the aorta to tyramine and mercury. The results are consistent with an indirect action of mercuric ion via release of endogenous catecholamines.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Neuza Mariko Aymoto Hassimotto ◽  
Vanessa Moreira ◽  
Neide Galvão do Nascimento ◽  
Pollyana Cristina Maggio de Castro Souto ◽  
Catarina Teixeira ◽  
...  

Anthocyanins are flavonoids which demonstrated biological activities inin vivoandin vitromodels. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF) extracted from wild mulberry and the cyanidin-3-glucoside (C3G), the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg) in mice. In each trial, AF and C3G (4 mg/100 g/animal) were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P<0.05). In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN) influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2production in the peritoneal exudates was observed when administered 30 min before cg (P<0.05). Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements.


1992 ◽  
Vol 286 (1) ◽  
pp. 197-203 ◽  
Author(s):  
S J Winder ◽  
M D Pato ◽  
M P Walsh

Calponin, a thin-filament protein of smooth muscle, has been implicated in the regulation of smooth-muscle contraction, since in vitro the isolated protein inhibits the actin-activated myosin MgATPase. This inhibitory effect, and the ability of calponin to bind to actin, is lost after its phosphorylation by protein kinase C or Ca2+/calmodulin-dependent protein kinase II [Winder & Walsh (1990) J. Biol. Chem. 265, 10148-10155]. If this phosphorylation reaction is of physiological significance, there must be a protein phosphatase in smooth muscle capable of dephosphorylating calponin and restoring its inhibitory effect on the actomyosin MgATPase. We demonstrate here the presence, in chicken gizzard smooth muscle, of a single major phosphatase activity directed towards calponin. This phosphatase was purified from the soluble fraction of chicken gizzard by (NH4)2SO4 fractionation and sequential chromatography on Sephacryl S-300, DEAE-Sephacel, omega-amino-octyl-agarose and thiophosphorylated myosin 20 kDa light-chain-Sepharose columns. The purified phosphatase contained three polypeptide chains of 60, 55 and 38 kDa which were shown to be identical with the subunits of SMP-I, a smooth-muscle phosphatase capable of dephosphorylating the isolated 20 kDa light chain of myosin but not intact myosin [Pato & Adelstein (1983) J. Biol. Chem. 258, 7047-7054]. Consistent with its identity with SMP-I, calponin phosphatase was classified as a type-2A protein phosphatase. Of several potential phosphoprotein substrates examined, calponin proved to be kinetically the best, suggesting that calponin may be a physiological substrate for this phosphatase. Finally, dephosphorylation of calponin which had been phosphorylated by protein kinase C restored completely its ability to inhibit the actin-activated MgATPase of smooth-muscle myosin. These observations support the hypothesis that calponin plays a role in regulating the contractile state of smooth muscle and that this function in turn is controlled by phosphorylation-dephosphorylation.


2004 ◽  
Vol 286 (6) ◽  
pp. G954-G963 ◽  
Author(s):  
Suresh B. Patil ◽  
Mercy D. Pawar ◽  
Khalil N. Bitar

Calponin has been implicated in the regulation of smooth muscle contraction through its interaction with F-actin and inhibition of the actin-activated MgATPase activity of phosphorylated myosin. Calponin has also been shown to interact with PKC. We have studied the interaction of calponin with PKC-α and with the low molecular weight heat-shock protein (HSP)27 in contraction of colonic smooth muscle cells. Particulate fractions from isolated smooth muscle cells were immunoprecipitated with antibodies to calponin and Western blot analyzed with antibodies to HSP27 and to PKC-α. Acetylcholine induced a sustained increase in the immunocomplexing of calponin with HSP27 and of calponin with PKC-α in the particulate fraction, indicating an association of the translocated proteins in the membrane. To examine whether the observed interaction in vivo is due to a direct interaction of calponin with PKC-α, a cDNA of 1.3 kb of human calponin gene was PCR amplified. PCR product encoding 622 nt of calponin cDNA (nt 351–972 corresponding to amino acids 92–229) was expressed as fusion glutathione S-transferase (GST) protein in the vector pGEX -KT. We have studied the direct association of GST-calponin fusion protein with recombinant PKC-α in vitro. Western blot analysis of the fractions collected after elution with reduced glutathione buffer (pH 8.0) show a coelution of GST-calponin with PKC-α, indicating a direct association of GST-calponin with PKC-α. These data suggest that there is a direct association of translocated calponin and PKC-α in the membrane and a role for the complex calponin-PKC-α-HSP27, in contraction of colonic smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document