scholarly journals Approximate Controllability of Semilinear Control System Using Tikhonov Regularization

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Ravinder Katta ◽  
N. Sukavanam

For an approximately controllable semilinear system, the problem of computing control for a given target state is converted into an equivalent problem of solving operator equation which is ill-posed. We exhibit a sequence of regularized controls which steers the semilinear control system from an arbitrary initial statex0to anϵneighbourhood of the target statexτat timeτ>0under the assumption that the nonlinear functionfis Lipschitz continuous. The convergence of the sequences of regularized controls and the corresponding mild solutions are shown under some assumptions on the system operators. It is also proved that the target state corresponding to the regularized control is close to the actual state to be attained.

2018 ◽  
Vol 11 (06) ◽  
pp. 1850088
Author(s):  
Anurag Shukla ◽  
N. Sukavanam ◽  
D. N. Pandey

The objective of this paper is to present some sufficient conditions for approximate controllability of semilinear fractional stochastic control system with delay. The results hold when the nonlinear function is Lipschitz continuous. Sufficient conditions are obtained by separating the given fractional semilinear stochastic system into two systems namely a semilinear fractional system and a fractional linear stochastic system. To prove our results, the Schauder fixed point theorem is applied. At the end, one example is given to illustrate the results.


2021 ◽  
Vol 13 (8) ◽  
pp. 4211
Author(s):  
Maciej Kozłowski ◽  
Andrzej Czerepicki ◽  
Piotr Jaskowski ◽  
Kamil Aniszewski

Urban traffic can be curbed in various ways, for instance, by introducing paid unguarded parking zones (PUPZ). The operational functionality of this system depends on whether or not the various system features used to document parking cases function properly, including those which enable positioning of vehicles parked in the PUPZ, recognition of plate numbers, event time recording, and the correct anonymisation of persons and other vehicles. The most fundamental problem of this system is its reliability, understood as the conformity of control results with the actual state of matters. This characteristic can be studied empirically, and this article addresses the methodology proposed for such an examination, discussed against a case study. The authors have analysed the statistical dependence of the e-control system’s measurement errors based on operational data. The results of this analysis confirm the rationale behind the deployment of the e-control system under the implementation of the smart city concept in Warsaw.


2011 ◽  
Vol 383-390 ◽  
pp. 7328-7331
Author(s):  
Lan Jiang Zhang ◽  
Gui Jie Wang

Designed the control system policy for automobile electric seat using fuzzy control technology, therefore established its control model by Fuzzy Logic Toolbox, and carried on the off-line simulation to choose controller's optimum control parameters. From the dynamic viewpoint, the auto electric seat adjustment system is not only a complex nonlinear function which includes the location of the DC servo motor and the speed, but also contains serious nonlinear coupling interference, so the system is a highly nonlinear strong coupling, variable multivariable system. Application of traditional control methods (such as traditional PID) is difficult to meet its order requirements, so the research is highly robust method of intelligent control is an effective way to solve the problem. Fuzzy control technology has become the field in which drawn greater attention and researched in recent years. It doesn’t depend on the mathematical model of controlled object, has a good robustness, and nonlinear control characteristics, so it is an effective means to control the object with time-varying, non- linear parameters. In this paper, fuzzy control technology to achieve the orders of auto electric seat adjustment control system functions in the Literature [1], and the tracking of the system was simulated.


Author(s):  
Heejin Lee ◽  

In this paper, a new scheme is presented for the accurate tracking control of the second-order variable structure systems using the variable boundary layer. Up to now, variable structure controller(VSC) applying the variable boundary layer did not remove chattering from an arbitrary initial state of the system trajectory because VSC has used the fixed sliding surface. But, by using the linear time-varying sliding surfaces, the scheme has the robustness against chattering from all states. The suggested method can be applied to the second-order nonlinear systems with parameter uncertainty and extraneous disturbances, and have better tracking performance than the conventional method.To demonstrate the advantages of the proposed algorithm, it is applied to a two-link manipulator.


Author(s):  
Oleksandr V. Stepanets ◽  
Yurii I. Mariiash

Background. Model predictive control (MPC) approach is the basic feedback scheme, combined with high adaptive properties, which determines its successful use in the practice of design and operation of control systems. These advantages allow managing multidimensional objects with a complex structure, including nonlinearity, optimizing processes in real time within the constraints on controlled and managed variables, taking into account uncertainties in the task of objects and perturbations. Objective. The purpose of the paper is to design and analyse control system of carbon monoxide oxidation in the convector cavity based on MPC with linear-quadratic cost functional with constraint. Methods. The design of MPC is based on mathematical model of an object (relatively simple). At the current step, the prediction of object dynamic response on some final period of time (prediction horizon) is carried out; control optimization is performed, the purpose of which is to approximate the control variables of the prediction model to the corresponding setpoint on the predict horizon. The found optimal control is applied and measurement of an actual state of object at the end of a step is carried out. The prediction horizon is shifted one step further, and this algorithm are repeated. Results. The results of modeling the automatic control system show that the MPC approach provides maintenance of carbon dioxide content when changing oxygen consumption and overshoot caused by introduction bulk does not exceed 0.6 % that meets the technological requirements of the process. Conclusions. A fuse of the MPC and the quadratic functional given the constraints on the input signals is proposed. The problems of control degree of carbon oxidation in the convector cavity include non-stationarity, so the use of classical control methods is difficult. The MPC approach minimizes the cost function that characterizes the quality of the process. The predicted behaviour of a dynamic system will usually differ from its actual motion. The obtained quadratic functional is optimized to find the optimal control of degree of CO oxidation to CO2.


Author(s):  
Nicholas Mwilu Mutothya ◽  
Yong Xu

This paper analyzed motion that randomly switches between the persistent motion runs and pause periods. A two-state continuous-time Markov chain is used to model the motion, which led to a system with coupled differential equations. Using a combined Fourier–Laplace transform, an analytical expression for calculating the mean-squared displacement is derived. The overall motion is investigated and identified from the obtained mean-squared displacement. The mean-squared displacement is a nonlinear function in time that is dependent on the phase transition rate, the direction switching rate, the average speed, and the initial state. It decays and grows with increasing the direction switching and average speed, respectively. The effective diffusivity descents exponentially in short times and remains constant in long times. The waiting time in each phase decayed exponentially. The probability density function for the position of a particle at a given time tends to be Gaussian in long times. The motion can be interpreted as a super-diffusion in short times and a standard diffusion in long times with a diffusion coefficient dependent on the phase transition rates, the direction switching rate and the average speed. Persistence influences the dynamical behavior for short times while for long times diffusive behavior is exhibited.


Author(s):  
Masaki Hayatsu ◽  
Shizuo Imaoka ◽  
Yasutaka Tagawa

Abstract Decreasing the number of skilled workers and utilization of automated machines is becoming a general trend at plant construction sites. For this reason, an automated pipe positioning system using a 5-DOF suspension mechanism has been developed as an important automated tool for power plant construction sites. This device is expected to be used for not only assisting less skilled operators, but also making operations more efficient at plant construction sites. This paper mainly focuses on the control system design and the control performance of the proposed positioning system. The controller is designed based on the disturbance observer concept. The pipe positioning system has a 5-DOF suspension mechanism which consists of five stepping motors and chains. A relationship between the actuator space (chain length) and the task space (position and attitude of the pipe center of gravity) is expressed using the Jacobian matrix, and each element of this Jacobian matrix is generally a nonlinear function in space. Therefore the plant in this system is nonlinear. In this study, a disturbance observer concept is used to remove this nonlinearlity, then a conventional linear feedback control low is applied to the control system. The control performance is verified through experiments using a pipe with a diameter of 0.3m. In the experiments, trajectories of the pipe center of gravity with the Jacobian nonlinearly compensation is compared to the trajectories without Jacobian compensation case, and the effectiveness of this pipe positioning system is shown.


Author(s):  
A. S. White

This chapter examines the established Systems Dynamics (SD) methods applied to software projects in order to simplify them. These methods are highly non-linear and contain large numbers of variables and built-in decisions. A SIMULINK version of an SD model is used here and conclusions are made with respect to the initial main controlling factors, compared to a NASA project. Control System methods are used to evaluate the critical features of the SD models. The eigenvalues of the linearised system indicate that the important factors are the hiring delay time, the assimilation time, and the employment time. This illustrates how the initial state of the system is at best neutrally stable with control only being achieved with complex non-linear decisions. The purpose is to compare the simplest SD and control models available required for “good” simulation of project behaviour with the Abdel-Hamid software project model. These models give clues to the decision structures that are necessary for good agreement with reality. The final simplified model, with five states, is a good match for the prime states of the Abdel-Hamid model, the NASA data, and compares favourably to the Ruiz model. The linear control system model has a much simpler structure, with the same limitations. Both the simple SD and control models are more suited to preliminary estimates of project performance.


Sign in / Sign up

Export Citation Format

Share Document