scholarly journals Ab Initio Study of Electronic Transport in Cubic-HfO2 Grain Boundaries

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Elena Degoli ◽  
Eleonora Luppi ◽  
Nathalie Capron

In polycrystalline materials the grain boundaries (GBs) are particularly important as they can act as a sink for atom defects and impurities, which may drive structural transformation of the materials and consequently modify their properties. Characterising the structure and properties of GBs is critical for understanding and controlling material property. Here, we investigated how GBs can modify the structural, electronic, and transport properties of the polycrystalline material HfO2. In general, grain boundaries are considered to be detrimental to the physical stability and electronic transport in HfO2. Anyway, studying by first principles the two most stable and common types of GBs, the tilt and the twist, we found substantial differences on the impact they have on the material properties. In fact, while tilt defects create channels of different sizes and shapes in hafnia along which the electronic transport is stronger in relation to leakage current through GBs, twist defects create a sort of amorphous structure that tends to resemble the bulk and which is independent of the number of rotated planes/atoms.

2007 ◽  
Vol 348-349 ◽  
pp. 41-44 ◽  
Author(s):  
Gareth M. Hughes ◽  
Gillian E. Smith ◽  
Peter E.J. Flewitt ◽  
A.G. Crocker

In polycrystalline materials grain boundaries provide an important contribution to the resistance to the propagation of both brittle and ductile cracks. In this paper we describe experimental measurements of brittle cracks developed within both small punch and matchstick test specimens of polycrystalline hcp zinc. These specimens were tested over the temperature range 77 to 423K. Fractography undertaken using focussed ion beam imaging provides detail of the propagation from grain to grain and across {10-12} twins of (0001) basal and {10-10} prismatic cleavage cracks. The results are discussed by comparison with the predictions from previously described 3-D geometric modelling applied to this hcp polycrystalline material.


Author(s):  
Eswarahalli S. Venkatesh ◽  
L.E. Murr

In a recent paper1 it was shown that grain boundary ledge structure can be changed by appropriate thermomechanical treatments. Grain boundary ledges are sources of dislocations2. Recently the effects of grain boundaries on the mechanical properties in metals and alloys were studied3,4. For a few years now the structure and properties of grain boundaries and their control have been considered as a means of strengthening polycrystalline materials5,6. Li5 has derived a Hall-Petch type relation in terms of grain boundary dislocation source (ledge) density, m, in the form where L is the grain size, σ0 and α are constants, and G ana b have the usual meaning. The influence of grain boundary ledge density, on the flow stress is considered in this paper.In the present work, pure (99.98%) nickel sheet mill rolled (hot) to 0.022 in. thick was used.


Author(s):  
J. R. Fekete ◽  
R. Gibala

The deformation behavior of metallic materials is modified by the presence of grain boundaries. When polycrystalline materials are deformed, additional stresses over and above those externally imposed on the material are induced. These stresses result from the constraint of the grain boundaries on the deformation of incompatible grains. This incompatibility can be elastic or plastic in nature. One of the mechanisms by which these stresses can be relieved is the activation of secondary slip systems. Secondary slip systems have been shown to relieve elastic and plastic compatibility stresses. The deformation of tungsten bicrystals is interesting, due to the elastic isotropy of the material, which implies that the entire compatibility stress field will exist due to plastic incompatibility. The work described here shows TEM observations of the activation of secondary slip in tungsten bicrystals with a [110] twist boundary oriented with the plane normal parallel to the stress axis.


Author(s):  
R. W. Fonda ◽  
D. E. Luzzi

The properties of polycrystalline materials are strongly dependant upon the strength of internal boundaries. Segregation of solute to the grain boundaries can adversely affect this strength. In copper alloys, segregation of either bismuth or antimony to the grain boundary will embrittle the alloy by facilitating intergranular fracture. Very small quantities of bismuth in copper have long been known to cause severe grain boundary embrittlement of the alloy. The effect of antimony is much less pronounced and is observed primarily at lower temperatures. Even though moderate amounts of antimony are fully soluble in copper, concentrations down to 0.14% can cause grain boundary embrittlement.


Author(s):  
Sebastian Eisele ◽  
Fabian M. Draber ◽  
Steffen Grieshammer

First principles calculations and Monte Carlo simulations reveal the impact of defect interactions on the hydration of barium-zirconate.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


Author(s):  
Yuan Chen ◽  
Jing Ling ◽  
Mingyue Li ◽  
Yongchao Su ◽  
Kinnari Santosh Arte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document