scholarly journals Thermoplastic Cassava Starch-PVA Composite Films with Cellulose Nanofibers from Oil Palm Empty Fruit Bunches as Reinforcement Agent

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Farah Fahma ◽  
Sugiarto ◽  
Titi Candra Sunarti ◽  
Sabrina Manora Indriyani ◽  
Nurmalisa Lisdayana

Thermoplastic starch-polyvinyl alcohol composite films were prepared by casting method with cellulose nanofibers as reinforcement agent and glycerol as plasticizer. The obtained cellulose nanofibers with a diameter of 27.23±8.21 nm were isolated from oil palm empty fruit bunches (OPEFBs) by mechanical treatment. The addition of cellulose nanofibers until 3 wt% increased tensile strength and crystallinity of the composite films. In contrast, it decreased their elongation at break and water vapor transmission rate. Meanwhile, the addition of glycerol increased elongation at break and water vapor transmission rate of film matrix but lowers tensile strength of composite films.

2020 ◽  
Vol 990 ◽  
pp. 318-324
Author(s):  
Arie Listyarini ◽  
Windri Handayani ◽  
Vivi Fauzia ◽  
Cuk Imawan

Ammonia is one of the compounds released during the food spoilage process, so a device that can detect ammonia can be used as an indicator of food spoilage. This article reports on the preparation and characteristics of Starch/PVA composite films with Syzygium oleana as indicator films to detect ammonia vapor. The indicator was made by first preparing the starch / PVA composite films by casting method and then the films were dipped in Syzygium oleana extract. These films were characterized by using a UV-Vis spectrophotometer, Fourier Transformed Infra-Red Spectrophotometer and tested for mechanical properties such as tensile strength and elongation, and the water vapor transmission rate (WVT). The results showed that the addition of PVA reduced the absorbance value in the UV and visible area, the value of the water vapor transmission rate and the tensile strength but the elongation value of the film on the other hand rose. The indicator films can detect ammonia which was marked by its color change from red to blue. For further application, it can be used as a smart packaging label that can detect food freshness.


2019 ◽  
Vol 7 (2) ◽  
pp. 125 ◽  
Author(s):  
Azka Prima Nurindra ◽  
Moch Amin Alamsjah ◽  
Sudarno Sudarno

Abstract The using of synthetic packaging generally has a problem for healthy and nature. This plastic rubbish can’t degredable by nature and soil. Necessary alternative packaging technology which safe and degredable that is edible film. Use of single material in edible film as starch have some shortage, that is brittle and rigid. Therefore, it is necessary to add material as plasticizer. Plasticizer that use in this study is Carboxymethyl Cellulose. This purpose of this study is to know the effect addition of carboxymethyl cellulose on characterization edible film from propagules mangorve B.gymnorrhiza. The method of this study is experimental with Completely Randomized Design. The treatment is concentration addition of CMC, that is A (0%), B (0,2%), C (0,4%), D (0,6%), E (0,8%), F (1%) and G (1,2%), with four repeatations. Parameters measured were thcikness, water vapor transmission rate, tensile strength and elongation at break. Data analysis using Analysis of Varioan (ANOVA) and if there is difference significant on the result, further with Duncan’s Multiple Range Test. The result of this study show that addition of CMC have different very significant (p<0,01) on thickness, water vapor transmission rate, tensile strength and elongation at break. The best treatment in this study is treatment G (addition CMC concentration 1,2%) with scoring method which basicaly on JIS (Japanesse Industrial Standard) 


2019 ◽  
Vol 7 (4) ◽  
pp. 531
Author(s):  
Wijaya Saputra ◽  
Amna Hartiati ◽  
Bambang Admadi Harsojuwono

Bioplastics are a type of plastic made from renewable materials such as starch. A study aims to determine the effect of addition zinc oxide (ZnO) and the of glycerol and this interaction to the characteristics of the bioplastik starch dioscorea hispida and determine the addition of zinc oxide (ZnO) and the of glycerol to produce bioplastiks from starch dioscorea hispida with the best characteristics. This study uses factorial randomized block design. The first factor is the addition of zinc oxide (ZnO) which consists of 3 levels, namely 8, 9 and 10% (from 6 grams of starch). The second factor is the addition of glycerol which consists of 3 levels, namely 1; 1.5 and 2 grams. Each treatment is grouped into 2 based on production time, so that 18 units are obtained. The variables observed were tensile strength, elongation at break, elasticity, biodegradation, water absorption, water vapor transmission rate. The data obtained were analyzed for diversity and continued with a test of Significant Honest Difference. The results showed that the addition of zinc oxide and the glycerol have a very significant effect on tensile strength, elongation at break, elasticity, development and transmission of water vapor. While the interaction of the concentration of zinc oxide (ZnO) and the addition of glycerol have a very significant effect on tensile strength and elongation at break and have a significant effect on elasticity and development. The treatment of 10% addition with 1 gram of glycerol is the best characteristic of bioplastic dioscorea hispida denst with a tensile strength value of 1.385 ± 0.007 MPa; elongation 10.2±0.014 %; elasticity 13.995±0.204 MPa; swelling 13.5±0.007 %; Water Vapour Transmition 0.0053±0,013 g/hour.m2; biodegradation ability of 7 days. Keywords: bioplastics, ZnO, glycerol, Dioscorea hispida Deenst.


Author(s):  
Nurwani Hayati ◽  
Lazulva Lazulva

The manufacture of the bioplastic was done through the mixing process using an aquades solvent with a ratio massa 10 gram and 7 gram cornstarch, 150 mL aquades, 2 Ml glycerol and 0,5 gram ZnO. This study aim to find out physical characteristies (water vapour transmission rate, water content, thickness,biodegradation) and mechanical charateristics (tensile strength, elongasi, modulus young) are made of cornstrach (Zea mays) using ZnO metal. From the test results tensile strength was 2.744-4.018 Mpa, percentage of elongation was 28.4632.383%, modulus young’s was 8.9031026535-14.08617709Mpa, thickness was 0.16-0.29mm, water vapor transmission rate was 0.4329-1.52525g/m2.24 hours, water content was 13.5-14.5%, and biodegradation was 3.7798-7.0346% and 455-809 days.


2012 ◽  
Vol 608-609 ◽  
pp. 1351-1353
Author(s):  
Wen Ming Ren ◽  
Pei Fang Cheng ◽  
Xue Feng Liu

In order to improve the practical performance of common Cellophane as packaging material, PET/PT composite film were prepared by means of Dry Lamination, and the influence of temperature on water vapor permeation of composite films was investigated at the range of 20-50°C at 50% relative humidity. The results showed that the moisture barrier properties of common Cellophane were improved obviously by means of coating on the PET films and the water vapor transmission rate of composite films was increased with temperature increasing in the range from 20°C to 50°C,the relationship between water vapor transmission rate of the composite films and the temperature followed an exponential grow curve [y=1.3441exp (0.0597x)], correlation coefficient R is 0.9957.


2019 ◽  
Vol 2 (2) ◽  
pp. 134 ◽  
Author(s):  
Anjar Setyaji ◽  
Ima Wijayanti ◽  
Romadhon Romadhon

Gelatin of skin tilapia (Oreochromis niloticus) has the potential as an edible film but has weaknesses due to the hydrophilic so that the value of the water vapor transmission rate is high. The addition of carrageenan combined with palmitic acid is used to improve the characteristics of edible films modified bythe polymer network so that it can act as cross linking which is expected to reduce the rate of water vapor transmission rate edible film. indigo and get the best carrageenan concentration edible film seen from the value of the water vapor transmission rate. The ingredients used are tilapia skin gelatin, carrageenan and palmitic acid. The research method used was experimental laboratories with completely randomized design (CRD) experimental design. Parameters observed were thickness test, solubility, tensile strength, percent elongation and water vapor transmission rate. Data were analyzed using variance analysis (ANOVA). To find out the differences between treatments, the data was tested by HSD further tests. The results showed that the difference in carrageenan concentration significantly affected (P<0,05)  the thickness value, tensile strength, percent elongation, solubility and water vapor transmission rate. Addition of carrageenan 0.8% was the best result which has a tensile strength of 4.209 ± 0.241 MPa, elongation percent 16.332 ± 1.019%, solubility of 65.911 ± 2.930% and water vapor transmission rate of 7.792 ± 0.376 g / m2. Hour. Testing of tensile strength in 0,8% carrageenan film showed that the film matrix binds so that the film was not easily broken compared to the control. The low water vapor transmission rate in the 0.8% carrageenan addition edible film sample showed the formation of cross linking between gelatin and carrageenan protein molecules.


2020 ◽  
Vol 147 ◽  
pp. 03016
Author(s):  
Adinda Dwi Putri Marismandani ◽  
Amir Husni

Plastics are widely used as packaging materials but can cause environmental problems because they are not easily degraded. Therefore, it was necessary to find alternative packaging materials that were easily degraded, including edible film. The main raw materials for edible film were alginate and plasticizers including glycerol and virgin coconut oil (VCO). The aims of this study were to determine the characteristics of edible films composed of alginate, glycerol and VCO and to determine the best concentration of alginate in edible films. The study was carried out through the manufacture of edible films composed of alginates at various concentrations (2, 3, 4, 5 and 6%), 10% glycerol and 0.01% VCO. The characteristics observed included thickness, tensile strength, elongation, solubility, and water vapor transmission rate (WVTR). The results showed that increasing the concentration of alginate increased the thickness, tensile strength, and elongation of edible films but reduced the solubility and WVTR of edible films. The best alginate concentration was 4% with the following characteristics: thickness, 0.12±0.01 mm; tensile strength, 1.59±0.12 MPa; elongation, 48.73±1.97%; solubility, 92.07±0.57%; and WVTR, 49.18±0.59 g/m2.24 hours. The various alginate concentrations significantly affected the thickness, tensile strength, elongation, and water vapor transmission rate of the edible film produced.


2020 ◽  
Vol 82 (2) ◽  
Author(s):  
Adiansyah Syarifuddin ◽  
Paddasejati Paddasejati ◽  
Andi Dirpan ◽  
Nandi Kuswandi Sukendar ◽  
Mulyati Muhammad Tahir

κ-carrageenan/gelatin mixtures and canola oil can form an emulsion film when they are well combined and can mediate the release of volatile substances. The objectives of this study were: 1) to investigate the effect of different ratios of κ-carrageenan/gelatin with and without the addition of canola oil on moisture content, solubility, thickness, water vapor transmission rate, tensile strength and percent elongation, 2) to study the release of ethyl acetate with different ratios of κ-carrageenan/gelatin with added canola oil. Edible films were prepared with varying ratios of κ-carrageenan/gelatin with and without the addition of canola oil. Ethyl acetate release from selected films was also observed. The results showed that different ratios of κ-carrageenan/gelatin with canola oil addition induced changes in moisture content, thickness, water vapor transmission rate, and tensile strength (p<0.05). A significant decrease in the water vapor transmission rate of films was induced by canola oil with a ratio of κ-carrageenan/gelatin of 1.35:1.65. In addition, κ-carrageenan/gelatin at a ratio of 1.35:1.65 with added canola oil triggered a larger release of ethyl acetate. These findings confirmed that different ratios of κ-carrageenan/gelatin with canola oil could be used to tailor emulsified films with enhanced barrier properties and to trigger the release of volatile substances.


2020 ◽  
Vol 147 ◽  
pp. 03003
Author(s):  
Novia Racmayani ◽  
Amir Husni

Edible film can be used for food packaging. The main raw materials for edible film were alginates and plasticizers including glycerol and olive oil. This study aims to determine the characteristics of edible film composed of alginate, glycerol and olive oil. The study was carried out through the manufacture of edible films composed of alginates with various concentrations (2, 3, 4, 5 and 6%, w / v), 10% glycerol and 0.01% olive oil. Characteristics of edible film was observed including thickness, tensile strength, water vapor transmission rate, solubility and elongation. The results showed that the products met the edible film standard of the Japanese Industrial Standard. Concentration of alginate used had significant effect on thickness, tensile strength, solubility and elongation of the edible film. The films with 6% concentration of alginate showed optimum results with thickness 0,227 ± 0,008 mm, tensile strength 3,097 ± 0,384 MPa, elongation 86,682 ± 5,090 %, solubility 8,690 ± 2,892 % and water vapor transmission rate 45,477 ± 6,262 g/m2/24 h.


2018 ◽  
Vol 32 (1) ◽  
pp. 55
Author(s):  
Rohula Utami ◽  
Lia Umi Khasanah ◽  
Katut Kompi Yuniter ◽  
Godras Jati Manuhara

<p><em>Synthetic packagin</em><em>g</em><em> </em><em>caused negative</em><em> impact</em><em>s</em><em> on environmental pollution. Utilization of edible film packaging is more effective than synthetic packaging </em><em>due to the </em><em>biodegradable p</em><em>roperties</em><em>.</em><em> </em><em>The </em><em>two stages cinnamon leaves </em><em>o</em><em>leoresin contain active compounds </em><em>th</em><em>a</em><em>t </em><em>performed the antimicrobial and antioxidant</em><em> </em><em>a</em><em>ctivity</em><em>. In this study, addition </em><em>of </em><em>two stages cinnamon leaves oleoresin </em><em>on</em><em> </em><em>edible tapioca</em><em> film can affect the characteristics of the edible film. E</em><em>ffect of </em><em>two stages cinnamon leaves oleoresin </em><em>on</em><em> edible films</em><em> char</em><em>a</em><em>cteristics</em><em> was investigated</em><em>.</em><em> The results </em><em>showed that the addition of two stages cinnamon leaves </em><em>o</em><em>leoresin (0%, 0</em><em>.</em><em>025%, 0</em><em>.</em><em>5%, 0</em><em>.</em><em>075%, and 0</em><em>.</em><em>1%) does not affect the thickness, tensile strength, and water vapor transmission rate of edible film, </em><em>while</em><em> affect</em><em>ed</em><em> </em><em>the</em><em> elongation and microbial inhibition of edible film. </em><em>T</em><em>he edible film with the addition of 0.1% two stages cinnamon leaves </em><em>o</em><em>leoresin resulted the best microbial inhibition and physical characteristics of edible film with the thickness of 0</em><em>.</em><em>128 mm, tensile strength </em><em>of </em><em>0</em><em>.</em><em>2189 MPa, elongation </em><em>of </em><em>283</em><em>.</em><em>2721%, water vapor transmission rate </em><em>of </em><em>29.786 g<strong>/</strong>jam.m<sup>2</sup>, and microbial inhibition zone of 31</em><em>.</em><em>394 mm</em><em>.</em><strong><em></em></strong></p>


Sign in / Sign up

Export Citation Format

Share Document