scholarly journals Adaptive Antenna Null Broadening Beamforming against Array Calibration Error Based on Adaptive Variable Diagonal Loading

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Wenxing Li ◽  
Yu Zhao ◽  
Qiubo Ye ◽  
Bin Yang

An approach for null broadening beamforming is proposed based on adaptive variable diagonal loading (VDL) and combined with the covariance matrix taper (CMT) approach, aiming at improving the robustness of adaptive antenna null broadening beamforming when array calibration error exists. Hence, it is named VDL-CMT. In this novel approach, the signal-to-noise ratio in the tapered sample covariance matrix is estimated and the VDL factor can be obtained adaptively. Then, the covariance matrix of the CMT approach is loaded with the obtained VDL factor. According to simulation results, in the case of array calibration error, robustness of the VDL-CMT is significantly improved and its performance is better than that of the existing adaptive antenna null broadening beamforming approaches.

Author(s):  
Dinghui Wu ◽  
Juan Zhang ◽  
Bo Wang ◽  
Tinglong Pan

Traditional static threshold–based state analysis methods can be applied to specific signal-to-noise ratio situations but may present poor performance in the presence of large sizes and complexity of power system. In this article, an improved maximum eigenvalue sample covariance matrix algorithm is proposed, where a Marchenko–Pastur law–based dynamic threshold is introduced by taking all the eigenvalues exceeding the supremum into account for different signal-to-noise ratio situations, to improve the calculation efficiency and widen the application fields of existing methods. The comparison analysis based on IEEE 39-Bus system shows that the proposed algorithm outperforms the existing solutions in terms of calculation speed, anti-interference ability, and universality to different signal-to-noise ratio situations.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Wenxing Li ◽  
Xiaojun Mao ◽  
Zhuqun Zhai ◽  
Yingsong Li

A high performance robust beamforming scheme is proposed to combat model mismatch. Our method lies in the novel construction of interference-plus-noise (IPN) covariance matrix. The IPN covariance matrix consists of two parts. The first part is obtained by utilizing the Capon spectrum estimator integrated over a region separated from the direction of the desired signal and the second part is acquired by removing the desired signal component from the sample covariance matrix. Then a weighted summation of these two parts is utilized to reconstruct the IPN matrix. Moreover, a steering vector estimation method based on orthogonal constraint is also proposed. In this method, the presumed steering vector is corrected via orthogonal constraint under the condition where the estimation does not converge to any of the interference steering vectors. To further improve the proposed method in low signal-to-noise ratio (SNR), a hybrid method is proposed by incorporating the diagonal loading method into the IPN matrix reconstruction. Finally, various simulations are performed to demonstrate that the proposed beamformer provides strong robustness against a variety of array mismatches. The output signal-to-interference-plus-noise ratio (SINR) improvement of the beamformer due to the proposed method is significant.


2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Eric Järpe ◽  
Mattias Weckstén

A new method for musical steganography for the MIDI format is presented. The MIDI standard is a user-friendly music technology protocol that is frequently deployed by composers of different levels of ambition. There is to the author’s knowledge no fully implemented and rigorously specified, publicly available method for MIDI steganography. The goal of this study, however, is to investigate how a novel MIDI steganography algorithm can be implemented by manipulation of the velocity attribute subject to restrictions of capacity and security. Many of today’s MIDI steganography methods—less rigorously described in the literature—fail to be resilient to steganalysis. Traces (such as artefacts in the MIDI code which would not occur by the mere generation of MIDI music: MIDI file size inflation, radical changes in mean absolute error or peak signal-to-noise ratio of certain kinds of MIDI events or even audible effects in the stego MIDI file) that could catch the eye of a scrutinizing steganalyst are side-effects of many current methods described in the literature. This steganalysis resilience is an imperative property of the steganography method. However, by restricting the carrier MIDI files to classical organ and harpsichord pieces, the problem of velocities following the mood of the music can be avoided. The proposed method, called Velody 2, is found to be on par with or better than the cutting edge alternative methods regarding capacity and inflation while still possessing a better resilience against steganalysis. An audibility test was conducted to check that there are no signs of audible traces in the stego MIDI files.


2013 ◽  
Vol 143 (11) ◽  
pp. 1887-1897 ◽  
Author(s):  
Weiming Li ◽  
Jiaqi Chen ◽  
Yingli Qin ◽  
Zhidong Bai ◽  
Jianfeng Yao

2012 ◽  
Vol 01 (01) ◽  
pp. 1150002 ◽  
Author(s):  
DAMIEN PASSEMIER ◽  
JIAN-FENG YAO

In a spiked population model, the population covariance matrix has all its eigenvalues equal to units except for a few fixed eigenvalues (spikes). Determining the number of spikes is a fundamental problem which appears in many scientific fields, including signal processing (linear mixture model) or economics (factor model). Several recent papers studied the asymptotic behavior of the eigenvalues of the sample covariance matrix (sample eigenvalues) when the dimension of the observations and the sample size both grow to infinity so that their ratio converges to a positive constant. Using these results, we propose a new estimator based on the difference between two consecutive sample eigenvalues.


Sign in / Sign up

Export Citation Format

Share Document