scholarly journals Performance Evaluation of 5G Millimeter-Wave Cellular Access Networks Using a Capacity-Based Network Deployment Tool

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Michel Matalatala ◽  
Margot Deruyck ◽  
Emmeric Tanghe ◽  
Luc Martens ◽  
Wout Joseph

The next fifth generation (5G) of wireless communication networks comes with a set of new features to satisfy the demand of data-intensive applications: millimeter-wave frequencies, massive antenna arrays, beamforming, dense cells, and so forth. In this paper, we investigate the use of beamforming techniques through various architectures and evaluate the performance of 5G wireless access networks, using a capacity-based network deployment tool. This tool is proposed and applied to a realistic area in Ghent, Belgium, to simulate realistic 5G networks that respond to the instantaneous bit rate required by the active users. The results show that, with beamforming, 5G networks require almost 15% more base stations and 4 times less power to provide more capacity to the users and the same coverage performances, in comparison with the 4G reference network. Moreover, they are 3 times more energy efficient than the 4G network and the hybrid beamforming architecture appears to be a suitable architecture for beamforming to be considered when designing a 5G cellular network.

Author(s):  
Hervé Rivano ◽  
Isabelle Augé-Blum ◽  
Walid Bechkit ◽  
Khaled Boussetta ◽  
Marco Fiore ◽  
...  

Smart cities are envisioned to enable a vast amount of services in urban environments, so as to improve mobility, health, resource management, and, generally speaking, citizens' quality of life. Most of these services rely on pervasive, seamless and real-time access to information by users on the move, as well as on continuous exchanges of data among millions of devices deployed throughout the urban surface. It is thus clear that communication networks will be the key to enabling smart city solutions, by providing their core support infrastructure. In particular, wireless technologies will represent the main tool leveraged by such an infrastructure, as they allow device mobility and do not have the deployment constraints of wired architectures. In this Chapter, we present different wireless access networks intended to empower future smart cities, and discuss their features, complementarity and interoperability.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Michel Matalatala ◽  
Margot Deruyck ◽  
Emmeric Tanghe ◽  
Luc Martens ◽  
Wout Joseph

Massive MIMO techniques are expected to deliver significant performance gains for the future wireless communication networks by improving the spectral and the energy efficiencies. In this paper, we propose a method to optimize the positions, the coverage, and the energy consumption of the massive MIMO base stations within a suburban area in Ghent, Belgium, while meeting the low power requirements. The results reveal that massive MIMO provides better performances for the crowded scenario where users’ mobility is limited. With 256 antennas, a massive MIMO base station can simultaneously multiplex 18 users at the same time-frequency resource while consuming 8 times less power and providing 200 times more capacity than a 4G reference network for the same coverage. Moreover, a pilot reuse pattern of 3 is recommended in a multiuser multicell environment to obtain a good tradeoff between the high spectral efficiency and the low power requirement.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6561
Author(s):  
Pingchuan Liu ◽  
Kuangang Fan ◽  
Yuhang Chen

Over the last decade, unmanned aerial vehicles (UAVs) with antenna arrays have usually been employed for the enhancement of wireless communication in millimeter-wave bands. They are commonly used as aerial base stations and relay platforms in order to serve multiple users. Many beamforming methods for improving communication quality based on channel estimation have been proposed. However, these methods can be resource-intensive due to the complexity of channel estimation in practice. Thus, in this paper, we formulate an MIMO blind beamforming problem at the receivers for UAV-assisted communications in which channel estimation is omitted in order to save communication resources. We introduce one analytical method, which is called the analytical constant modulus algorithm (ACMA), in order to perform blind beamforming at the UAV base station; this relies only on data received by the antenna. The feature of the constant modulus (CM) is employed to restrict the target user signals. Algebraic operations, such as singular value decomposition (SVD), are applied to separate the user signal space from other interferences. The number of users in the region served by the UAV can be detected by exploring information in the measured data. We seek solutions that are expressible as one Kronecker product structure in the signal space; then, the beamformers that correspond to each user can be successfully estimated. The simulation results show that, by using this analytically derived blind method, the system can achieve good signal recovery accuracy, a reasonable system sum rate, and acceptable complexity.


Telecom IT ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 35-59
Author(s):  
G. Fokin

In this paper, we investigate the dependence of the level of intersystem interference on the beam width of the adaptively formed antenna radiation pattern and the territorial separation of neighboring devices in ultra-dense 5G radio access networks. The results of simulation modeling of a radio access network based on 19 base stations with the parameterization of the antenna array gain by the width of the radiation pattern in the horizontal plane show that when the base station beam is di-rected to the user device and narrowed from 360° to 5°, the level of intrasystem interference decreases by 15 dB compared with the case of omnidirectional antennas. The results of simulation of a radio access network based on 19 three-sector base stations with planar antenna arrays of 64 elements illustrate a significant reduction in the level of interference in comparison with the case of omnidirectional antennas and, in order to obtain zones of a positive signal-to-noise ratio, confirm the need for a territorial separation of neighboring devices by 10–20 % of the range of radio coverage.


Author(s):  
С.В. ТЕРЕНТЬЕВ ◽  
М.А. ШЕЛКОВНИКОВ ◽  
В.О. ТИХВИНСКИЙ ◽  
Е.Е. ДЕВЯТКИН

Предметом статьи является исследование электромагнитной совместимости (ЭМС) базовых станций LTE нестандартизованного частотного диапазона 1785-1805 МГц с временным дуплексом (TDD) для технологической связи на железныхдорогах и базовых станций LTE-1800 с частотным дуплексом (FDD) операторов мобильной связи частотного диапазона Band 3. Актуальность исследований обусловлена будущим внедрением технологической сети LTE-1800 TDD для организации беспроводной связи на железных дорогах и разработкой условий ЭМС с существующими сетями радиодоступа E-UTRAN FDD операторов мобильной связи, работающих в примыкающих частотных диапазонах 1710-1785 и 1805-1880 МГц. The subject of this article is a study of electromagnetic compatibility (EMC) conditions of LTE-1800 TDD base stations for railways technological communications in the non-standardized frequency band 1785-1805 MHz and LTE-1800 FDD base stations of traditional mobile operator networks of the Band 3 frequency band. The relevance of the research is due to the future deployment of technological railway LTE-1800 TDD communication networks and the development of EMC conditions with the existing E-UTRAN FDD radio access networks of mobile operators operating in the adjacent frequency ranges 1710-1785 MHz and 1805-1880 MHz.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3486-3490

For future 5G wireless communication networks, millimeter-wave (mmWave) cellular systems is considered to be the key enabling technology because of its high data rates, low latency, high system capacity, and huge available bandwidths. However, multiuser networks in mmWave frequency bands encounter high path loss and interference, thus degrading the performance. Applying large antenna arrays at the base stations (BS) in order to achieve high beamforming gains with the help of precoding techniques is an efficient way of improving the performance of the system. Although multi-user beamforming can improve spectral efficiencies, full digital beamforming strategies used in the conventional microwave systems increase the hardware cost and consumes high power for large number of antennas in mmW systems. In this paper, a low-complexity multi-user hybrid precoding structure is proposed for mmWave multiple input multiple output (MIMO) channels utilizing Minimum Mean Square Error (MMSE) precoders at the BS with perfect channel knowledge. Simulations show that the achievable rate obtained by the proposed hybrid precoding scheme is very close to the single-user rate and also performs better compared to other hybrid precoding approaches.


Author(s):  
Péter Fülöp ◽  
Sándor Imre ◽  
Sándor Szabó ◽  
Tamás Szálka

The efficient dimensioning of cellular wireless access networks depends highly on the accuracy of the underlying mathematical models of user distribution and traffic estimations. The optimal placement/deployment of e.g. UMTS, IEEE 802.16 WiMAX base stations or IEEE 802.11 WLAN access points is based on user distribution and traffic characteristics in the service area. In this paper we focus on the tradeoff between the accuracy and the complexity of the mathematical models used to describe user movements in the network. We propose a novel Markov chain based model capable of utilizing user’s movement history thus providing more accurate results than other models in the literature. The new model is applicable in real-life scenarios, because it relies on information effectively available in cellular networks (e.g. handover history). The complexity of the proposed model is analyzed, and the accuracy is justified by means of simulation.


Author(s):  
Vinod Kumar Mishra ◽  
Pankaja Bisht

Power consumption of mobile devices is a great concern in the current mobile communication systems. Recent analysis by manufacturers and network operators has shown that current wireless networks are not very energy efficient. Power consumption is directly related to the coverage area of the base station. So in this chapter, the authors analyze and compare the total power consumption, power consumption per covered area and ranges of the macrocell, microcell and femtocell base stations for Mobile WiMAX, fixed WiMAX, UMTS, HSPA, LTE for 1x1 SISO systems and mobile WiMAX, HSPA, and LTE will be considered for 2x2 MIMO system. The numerical example will be illustrated with help of simulation results. This chapter enables the reader for knowledge of power consumption in existing wireless access networks technology with current and future trends of research.


2017 ◽  
pp. 476-507 ◽  
Author(s):  
Hervé Rivano ◽  
Isabelle Augé-Blum ◽  
Walid Bechkit ◽  
Khaled Boussetta ◽  
Marco Fiore ◽  
...  

Smart cities are envisioned to enable a vast amount of services in urban environments, so as to improve mobility, health, resource management, and, generally speaking, citizens' quality of life. Most of these services rely on pervasive, seamless and real-time access to information by users on the move, as well as on continuous exchanges of data among millions of devices deployed throughout the urban surface. It is thus clear that communication networks will be the key to enabling smart city solutions, by providing their core support infrastructure. In particular, wireless technologies will represent the main tool leveraged by such an infrastructure, as they allow device mobility and do not have the deployment constraints of wired architectures. In this Chapter, we present different wireless access networks intended to empower future smart cities, and discuss their features, complementarity and interoperability.


Sign in / Sign up

Export Citation Format

Share Document