scholarly journals Arc-Surfaced Frictional Damper for Vibration Control in Container Crane

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Gongxian Wang ◽  
Yang-Yang Wang ◽  
Jianming Yuan ◽  
Yi Yang ◽  
Dong Wang

In this paper, a new arc-surfaced frictional damper (AFD) is proposed and its hysteretic behavior is experimentally studied. Then the device is applied to container crane based on a seesaw mechanism. The major advantage of the seesaw damping system is that the long tension cables can be utilized as bracing between the seesaw member and the portal legs to avoid compression and buckling of the cables. A simplified trilinear force-displacement model on the basis of experimental results is adopted to represent the hysteretic behavior of AFD. After that, seismic responses of container crane with and without dampers to four earthquakes are studied using nonlinear dynamic time-history analysis. Besides this system, a diagonal-brace-AFD system is studied for comparison. A method based on the displacement and energy dissipation ratio is proposed to find the optimum slip force for seesaw damping system. Performance of AFD control system is assessed though various parameters including displacement and maximum portal frame drift angle. Results prove a feasible application of AFD control system to absorb large amounts of seismic energy and significantly reduce the structural responses.

2013 ◽  
Vol 353-356 ◽  
pp. 979-983
Author(s):  
Dong Zhang ◽  
Jing Bo Su ◽  
Hui De Zhao ◽  
Hai Yan Wang

Due to the upgrade and reconstruct of a high-piled wharf, the piling construction may cause the damage of the large diameter underground pipe of a power plant nearby. For this problem, a dynamic time-history analysis model was established using MIDAS/GTS program. Based on the analysis of the pile driving vibration and its propagation law, some parameters, such as the modulus of the soil, the Poissons ratio of soil, the action time of vibration load and the damping ratio of the soil that may have an effect on the response law of the soil, were studied. The study results not only serve as an important inference to the construction of this case, but also accumulate experience and data for other similar engineering practices.


Author(s):  
Hyun-Suk Nam ◽  
Gyo-Geun Youn ◽  
Jong-Min Lee ◽  
Hune-Tae Kim ◽  
Yun-Jae Kim

This work presents finite element ductile tearing simulation and experimental validation of a piping system with a circumferential surface cracked (SC) A106 Gr. B pipe under simulated seismic loading condition. The damage model for simulation is based on the multiaxial fracture strain energy. The parameters in the damage model are determined from tensile and fracture toughness test results under the monotonic loading condition. For the system dynamic time history analysis, the Rayleigh damping model is employed. For cyclic constitutive equations, two models were considered to confirm its sensitivity. Predicted crack initiation and ductile tearing agree well with the experimental results.


Author(s):  
Jong-Sung Kim ◽  
Suk-Hyun Lee ◽  
Hyeong Do Kweon

In this study, effect of analysis variables on structural integrity of nuclear piping under beyond design basis earthquake was investigated via performing dynamic time history seismic analysis. A finite element model of the piping system such as shut-down cooling line was developed combining solid and beam elements. Dynamic time history analysis was performed via finite element elastic plastic stress analysis. Validity of the dynamic time history analysis procedure was verified via comparing with the previous study results. Finally, the effect of analysis variables such as finite element characteristics, transition length between elbow and straight line, fluid effect, etc. was investigated via performing parametric dynamic time history seismic analysis. As a result, it was found that use of the 1st incompatible element is recommended, the transition length is the same as curvature of the elbow, and fluid has to be considered.


2011 ◽  
Vol 243-249 ◽  
pp. 1401-1404
Author(s):  
Yan Xia Ye ◽  
Jing Zhao

In order to study the influence of dynamic response of frame-support-wall structure with openings on floor, six 3D models with different radio of opening are made. According to the finite element mode analysis and dynamic time-history analysis, we know that the location of openings, the size of openings etc. are important to the performance of structure. In order to keep entire structure in good condition, we suggest that the rate of openings should be smaller than 6%~8%.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Rui Zhang ◽  
Dong-sheng Wang ◽  
Xiao-yu Chen ◽  
Hong-nan Li

In recent studies, spectral matching is the most commonly proposed method for selecting earthquake records for time-history analysis of structures. However, until now, there have been no serious investigations of the effects of coordinate values on the scaling of ground motions. This paper investigated the influence of using arithmetic and logarithmic values of response spectra in spectral matching procedures (i.e., ASM and LSM methods) on the results of nonlinear structural time-history analysis. Steel moment resisting frame structures of the 3-, 9-, and 20-stories, which represent low-, medium-, and high-rise buildings, respectively, were used as examples. Structural benchmark responses were determined by calculating the arithmetic mean and median of peak interstory drift ratio (PIDR) demands based on the three record sets developed by the American SAC Steel Project. The three record sets represent seismic hazard levels with 50%, 10%, and 2% probabilities exceeded in 50 years, and their average acceleration spectra were also taken as the target spectrum. Moreover, another 40 record components for selection were scaled both by ASM and LSM methods. The seven components whose spectra were best compatible with the target spectra were selected for the structural time-history analysis. The scale factors obtained by the LSM method are nearly larger than that of the ASM method, and their ranking and selection of records are different. The estimation accuracies of structural mean (median) responses by both methods can be controlled within an engineering acceptable range (±20%), but the LSM method may cause larger structural responses than the ASM method. The LSM method has a better capacity for reducing the variability of structural responses than the ASM method, and this advantage is more significant for longer-period structures (e.g., 20-story structure) with more severe nonlinear responses.


2010 ◽  
Vol 163-167 ◽  
pp. 4295-4300
Author(s):  
Feng Miao ◽  
Lei Shi ◽  
Zhe Zhang

Base on the elastic-plastic analytical theory, an elastic-plastic time-history analysis of self-anchored cable-stayed suspension bridge, which engineering background is Dalian Gulf Cross-sea Bridge program, is performed by using general finite element software Midas/Civil. The material nonlinearity of structure is considered with reinforcement concrete fiber model, and distributed hinge type is adopted to simulate for plastic hinge. Compared with the results of an elastic time-history analysis, it is shown that for the structure into the elastic-plastic stage, because of the production of plastic hinge, the input seismic energy is dissipated partially, and the internal forces of structural elements are reduced. The bending moments and axial forces occur mainly in the main tower root. Furthermore, the rotation properties of the plastic hinge causes displacement increasing of certain parts of the structure, which assumes mainly the vertical displacement present on the top of main tower and the main beam. In conclusion, it is proposed that caging devices are set in the design.


Author(s):  
Vinod K. Sadashiva ◽  
Gregory A. MacRae ◽  
Bruce L. Deam

Structures may be irregular due to non-uniform distributions of mass, stiffness, strength or due to their structural form. For regular structures, simple analysis techniques such as the Equivalent Static Method, have been calibrated against advanced analysis methods, such as the Inelastic Dynamic Time-History Analysis. Most worldwide codes allow simple analysis techniques to be used only for structures which satisfy regularity limits. Currently, such limits are based on engineering judgement and lack proper calibration. This paper describes a simple and efficient method for quantifying irregularity limits. The method is illustrated on 3, 5, 9 and 15 storey models of shear-type structures, assumed to be located in Wellington, Christchurch and Auckland. They were designed in accordance with the Equivalent Static Method of NZS 1170.5. Regular structures were defined to have constant mass at every floor level and were either designed to produce constant interstorey drift ratio at all the floors simultaneously or to have a uniform stiffness distribution over their height. Design structural ductility factors of 1, 2, 4 and 6, and target (design) interstorey drift ratios ranging between 0.5% and 3% were used in this study. Inelastic dynamic time-history analysis was carried out by subjecting these structures to a suite of code design level earthquake records. Irregular structures were created with floor masses of magnitude 1.5, 2.5, 3.5 and 5 times the regular floor mass. These increased masses were considered separately at the first floor level, mid-height and at the roof. The irregular structures were designed for the same drifts as the regular structures. The effect of increased mass at the top or bottom of the structure tended to increase the median peak drift demands compared to regular structures for the record suite considered. When the increased mass was present at the mid-height, the structures generally tended to produce lesser drift demands than the corresponding regular structures. A simple equation was developed to estimate the increase in interstorey drift due to mass irregularity. This can be used to set irregularity limits.


2014 ◽  
Vol 658 ◽  
pp. 245-248 ◽  
Author(s):  
Adriana Ionescu ◽  
Mihai Negru ◽  
Cristian Burada

This paper presents the simulation of the influence of viscoelastic fluid dampers, with nonlinear damping properties, on damping property of a ten stories building structure. The study was made using Finite Elements Method and ANSYS program, on a 3d F.E.M. model. In order to obtain the influence of different types of damping nonlinearities of the viscoelastic fluid dampers on the damping property of the entire structure, there were made different types of simulations using modal analysis and seismic time history analysis. The graphics obtained can be used for determining the nonlinear features of fluid dampers for achieving different degrees of seismic energy dissipation for the analyzed building.


Sign in / Sign up

Export Citation Format

Share Document