scholarly journals Isolation of Fibroblast-Activation Protein-Specific Cancer-Associated Fibroblasts

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yingying Huang ◽  
Sufang Zhou ◽  
Yong Huang ◽  
Duo Zheng ◽  
Qiqi Mao ◽  
...  

The current study is to develop a gentle and efficient method for purification of fibroblast-activation protein positive (FAP+) cancer-associated fibroblasts (CAFs) from tumor tissues. Fresh tissues were isolated from BALB/c-Nude mice bearing human liver cancer cell line (HepG2), fully minced and separated into three parts, and digested with trypsin digestion and then treated with collagenase type IV once, twice, or thrice, respectively. Finally, the cells were purified by using FAP magnetic beads. The isolated CAFs were grown in culture medium and detected for the surface expression of fibroblast-activation protein (FAP). The number of adherent cells which were obtained by digestion process with twice collagenase type IV digestion was (5.99±0.18) × 104, much more than that with the only once collagenase type IV digestion (2.58±0.41) × 104 (P<0.0001) and similar to thrice collagenase type IV digestion. The percentage of FAP+ CAFs with twice collagenase type IV digestion (38.5%) was higher than that with the only once collagenase type IV digestion (20.0%) and little higher than thrice collagenase type IV digestion (37.5%). The FAP expression of CAFs was quite different from normal fibroblasts (NFs). The fibroblasts isolated by the innovation are with high purity and being in wonderful condition and display the features of CAFs.

Author(s):  
Do Huu Nghi ◽  
Vo Thi Ngoc Hao ◽  
Nguyen Thi Hong Nhung

This study discusses the results of the experimental application of high-content screening (HCS) techniques in evaluating the induction of cell-cycle arrest and apoptosis on human liver cancer cell line, Hep-G2. Accordingly, the bisbenzimide-stained cells (Hoechst 33342; 350 to 500 nM) were analyzed by using an Olympus scanˆR HCS-system to determine the cell-cycle phases (G1, S, and G2/M) and apoptosis as well. As a result, the cell-cycle arrest could be indicated by an increase in G2/M population of Hep-G2 cells after 24h exposure to zerumbone (Zer4; 9 µg/mL) and a similar observation could be made for paclitaxel (Pac; 4 µg/mL) as a reference substance. Keywords Apoptosis, cell-cycle arrest, high-content screening, human liver cancer cell line Hep-G2. References [1] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144 (2011) 646–674.[2] M. Malumbres, M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm, Nat. Rev. Cancer 9 (2009) 153–166.[3] S. Diermeier-Daucher, et al., Cell type specific applicability of 5-ethynyl-2'-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry, Cytometry A 75 (2009) 535-546.[4] J. Essers, et al., Nuclear dynamics of PCNA in DNA replication and repair, Mol. Cell Biol 25 (2005) 9350- 9359. [5] V. Roukos, et al., Dynamic recruitment of licensing factor Cdt1 to sites of DNA damage. J. Cell Sci. 124 (2011) 422-434.[6] M. Hesse, et al., Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle, Nat. Commun 3 (2012) 1076. doi: 10.1038/ncomms2089.[7] P. Cappella, F. Gasparri, M. Pulici, J. Moll, A novel method based on click chemistry, which overcomes limitations of cell cycle analysis by classical determination of BrdU incorporation, allowing multiplex antibody staining, Cytometry A 73 (2008) 626–636. [8] S. Diermeier-Daucher, et al., Cell type specific applicability of 5-ethynyl-2’-deoxyundine (EdU) for dynamic proliferation assessment in flow cytometry, Cytometry A 75 (2009) 535–546.[9] T. Yokochi, D.M. Gilbert, Replication labeling with halogenated thymidine analogs, Curr. Protoc. Cell Biol, 35 (2007) 22.10.1–22.10.14. [10] T.J. McGarry, M.W. Kirschner, Geminin, an inhibitor of DNA replication, is degraded during mitosis, Cell 93 (1998) 1043–1053. [11] H. Nishitani, S. Taraviras, Z. Lygerou, T. Nishimoto, The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J. Biol. Chem 276 (2001) 44905–44911.[12] J. Pines, T. Hunter, Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B, Nature 346 (1990) 760–763. [13] A. Stathopoulou, et al., Cdt1 is differentially targeted for degradation by anticancer chemotherapeutic drugs. PLoS ONE 7, e34621 (2012). [14] M. Hesse, A. Raulf, G.A. Pilz, C. Haberlandt, A.M. Klein, R. Jabs, H. Zaehres, C.J. Fügemann, K. Zimmermann, J. Trebicka, A. Welz, A. Pfeifer, W. Röll, M.I. Kotlikoff, C. Steinhäuser, M. Götz, H.R. Schöler, B.K. Fleischmann, Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle, Nat. Commun 3 (2012): 1076.[15] D.A. Ridenour, M.C. McKinney, C.M. Bailey, P.M. Kulesa, CycleTrak: a novel system for the semiautomated analysis of cell cycle dynamics. Dev. Biol 365 (2012) 189–195. [16] A. Roukos, et al., Cell cycle staging of individual cells by fluorescence microscopy, Nat. Protoc 10 (2015) 334-348.[17] E. Harlow, D. Lane, Fixing attached cells in paraformaldehyde, CSH Protoc 3 (2006) doi: 10.1101/pdb.prot4294.[18] G. Mazzini, M. Danova, Fluorochromes for DNA staining and quantitation, Method. Mol. Biol 1560 (2017) 239-259.[19] A. Gottfried, E. Weinhold, Sequence-specific covalent labelling of DNA, Biochem. Soc. Trans 39 (2011) 623-628.[20] J. Bucevičius, G. Lukinavičius, R. Gerasimaitė, The use of Hoechst dyes for DNA staining and beyond, Chemosensor 6 (2018) 1-18.[21] V. Kumar, A.K. Abbas, J.C. Aster, Robbins and Cotran Pathologic Basis of Disease, Ninth ed., Elsevier/Saunders, Philadelphia (2015).[22] N.A. Jensen et al., Establishment of a high content assay for the identification and characterisation of bioactivities in crude bacterial extracts that interfere with the eukaryotic cell cycle, J. Biotechnol 140 (2009) 124-134.[23] H.S. Rahman, et al., Zerumbone induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in Jurkat cell line, Nat. Prod. Commun 9 (2014) 1237-1242.[24] S.I. Abdelwahab, et al., Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells, Intern. Immunopharm 12 (2012) 594-602.[25] M. Xian, et al., Zerumbone, A bioactive sesquiterpene, induces G2/M cell cycle arrest and apoptosis in leukemia cells via a Fas- and mitochondria-mediated pathway, Cancer Sci 98 (2007) 118-126.[26] A. Sehrawat, et al., Zerumbone causes Bax-and Bak-mediated apoptosis in human breast cancer cells and inhibits orthotopic xenograft growth in vivo, Breast Cancer Res. Treat. 136 (2012) 429-441.[27] Y.Z. Zhou, et al., Zerumbone induces G1 cell cycle arrest and apoptosis in cervical carcinoma cells, Int. J. Clin. Exp. Med. 10 (2017) 6640-6647.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ali Sahragard ◽  
Zohreh Alavi ◽  
Zohreh Abolhassanzadeh ◽  
Mahmoodreza Moein ◽  
Afshin Mohammadi-Bardbori ◽  
...  

Cancer chemotherapies may result in resistance, and therefore, contemporary treatments including natural products may find an increasing consideration. As per Persian medicine (PM), many natural products have been used for malignant and chronic diseases. Triphala, with a combination of Terminalia chebula Retz., Terminalia bellirica Retz., Phyllanthus emblica L., and honey, is a multi-ingredient traditional formulation attributed to anticancer activities in PM. This study is aimed at evaluating the cytotoxic activity of this preparation on HepG2, the human liver cancer cell line. Hydroalcoholic extracts were prepared from the formulation and its components. Compared with the control and Cisplatin, the extracts were tested using MTT assay at different concentrations. All concentrations of the preparation, as well as Cisplatin, were effective significantly against HepG2 cells. All extract preparations at multiple concentrations were significantly effective as evidenced by MTT assay when compared to the control group. The IC50 level for Triphala extract was 77.63 ± 4.3   μ g / ml . Based on the results, Triphala and its components have cytotoxic activity on the HepG2 cancer cell line and they can reduce the survival rate significantly.


2016 ◽  
Vol 11 (1) ◽  
pp. 1-8
Author(s):  
Manal M. Ramadan ◽  
Amr F. Mansour ◽  
Reda M. Fekry ◽  
Marwa T. Salem ◽  
Fathy M. Mahaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document