scholarly journals Multivalent Fusion DNA Vaccine against Brucella abortus

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Leonardo Gómez ◽  
Javiera Llanos ◽  
Emilia Escalona ◽  
Darwin Sáez ◽  
Francisco Álvarez ◽  
...  

As an alternative brucellosis prevention method, we evaluated the immunogenicity induced by new multivalent DNA vaccines in BALB/c mice. We constructed the vaccines by fusion of BAB1_0273 and/or BAB1_0278 open reading frames (ORFs) from genomic island 3 (GI-3) and the Brucella abortus 2308 sodC gene with a link based on prolines and alanines (pV273-sod, pV278-sod, and pV273-278-sod, resp.). Results show that immunization with all tested multivalent DNA vaccines induced a specific humoral and cellular immune response. These novel multivalent vaccines significantly increased the production of IgM, IgG, and IgG2a antibodies as well as IFN-γ levels and the lymphoproliferative response of splenocytes. Although immunization with these multivalent vaccines induced a typical T-helper 1- (Th1-) dominated immune response, such immunogenicity conferred low protection levels in mice challenged with the B. abortus 2308 pathogenic strain. Our results demonstrated that the expression of BAB1_0273 and/or BABl_0278 antigens conjugated to SOD protein can polarize mice immunity to a Th1-type phenotype, conferring low levels of protection.

Vaccine ◽  
2012 ◽  
Vol 30 (50) ◽  
pp. 7286-7291 ◽  
Author(s):  
Fernanda Sislema-Egas ◽  
Sandra Céspedes ◽  
Pablo Fernández ◽  
Angello Retamal-Díaz ◽  
Darwin Sáez ◽  
...  

2006 ◽  
Vol 74 (5) ◽  
pp. 2734-2741 ◽  
Author(s):  
Deyan Luo ◽  
Bing Ni ◽  
Peng Li ◽  
Wei Shi ◽  
Songle Zhang ◽  
...  

ABSTRACT This study was designed to evaluate the immunogenicity and the protective efficacy of a divalent fusion DNA vaccine encoding both the Brucella abortus L7/L12 protein (ribosomal protein) and Omp16 protein (outer membrane lipoprotein), designated pcDNA3.1-L7/L12-Omp16. Intramuscular injection of this divalent DNA vaccine into BALB/c mice elicited markedly both humoral and cellular immune responses. The specific antibodies exhibited a dominance of immunoglobulin G2a (IgG2a) over IgG1. In addition, the dual-gene DNA vaccine elicited a strong T-cell proliferative response and induced a large amount of gamma interferon-producing T cells upon restimulation in vitro with recombinant fusion protein L7/L12-Omp16, suggesting the induction of a typical T-helper-1-dominated immune response in vivo. This divalent DNA vaccine could also induce a significant level of protection against challenge with the virulent strain B. abortus 544 in BALB/c mice. Furthermore, the protection level induced by the divalent DNA vaccine was significantly higher than that induced by the univalent DNA vaccines pcDNA3.1-L7/L12 or pcDNA3.1-Omp16. Taken together, the results of this study verify for the first time that the Omp16 gene can be a candidate target for a DNA vaccine against brucellosis. Additionally, a divalent genetic vaccine based on the L7/L12 and Omp16 genes can elicit a stronger cellular immune response and better immunoprotection than the relevant univalent vaccines can.


2001 ◽  
Vol 75 (11) ◽  
pp. 5036-5042 ◽  
Author(s):  
Felix Siegel ◽  
Mengji Lu ◽  
Michael Roggendorf

ABSTRACT DNA vaccinations are able to induce strong cellular immune responses in mice and confer protection against infectious agents. However, DNA vaccination of large animals appears to be less effective and requires repeated injections of large amounts of plasmid DNA. Enhancement of the efficiency of DNA vaccines may be achieved by coapplication of cytokine-expressing plasmids. Here we investigated, with woodchucks, whether coadministration of an expression plasmid for woodchuck gamma interferon (IFN-γ), pWIFN-γ, can improve DNA vaccination with woodchuck hepatitis virus core antigen (WHcAg). Animals were immunized with pWHcIm (a plasmid expressing WHcAg) alone or with a combination of pWHcIm and pWIFN-γ using a gene gun. Six weeks postimmunization, all animals were challenged with 105 genome equivalents of woodchuck hepatitis virus (WHV). The antibody and lymphoproliferative immune responses to WHV proteins were determined after immunization and after challenge. Vaccination with pWHcIm and pWIFN-γ led to a pronounced lymphoproliferative response to WHcAg and protected woodchucks against subsequent virus challenge. Two of three animals vaccinated with pWHcIm alone did not show a detectable lymphoproliferative response to WHcAg. A low-level WHV infection occurred in these woodchucks after challenge, as WHV DNA was detectable in the serum by PCR. None of the pWHcIm-vaccinated animals showed an anti-WHcAg antibody response after DNA vaccination or an anamnestic response after virus challenge. Our results indicate that coadministration of the WIFN-γ gene with pWHcIm enhanced the specific cellular immune response and improved the protective efficacy of WHV-specific DNA vaccines.


Vaccine ◽  
2018 ◽  
Vol 36 (21) ◽  
pp. 2928-2936 ◽  
Author(s):  
Leonardo Gómez ◽  
Francisco Alvarez ◽  
Daniel Betancur ◽  
Angel Oñate

Hematology ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 88-95 ◽  
Author(s):  
Dongzhi Cen ◽  
Gang Hu ◽  
Yubing Zhou ◽  
Lijian Yang ◽  
Shaohua Chen ◽  
...  

1998 ◽  
Vol 66 (12) ◽  
pp. 5684-5691 ◽  
Author(s):  
Ramesh Vemulapalli ◽  
A. Jane Duncan ◽  
Stephen M. Boyle ◽  
Nammalwar Sriranganathan ◽  
Thomas E. Toth ◽  
...  

ABSTRACT To identify Brucella antigens that are potentially involved in stimulating a protective cell-mediated immune response, a gene library of Brucella abortus 2308 was screened for the expression of antigens reacting with immunoglobulin G2a antibodies from BALB/c mice vaccinated with B. abortus RB51. One selected positive clone (clone MCB68) contained an insert of 2.6 kb; nucleotide sequence analysis of this insert revealed two open reading frames (ORFs). The deduced amino acid sequences of the first and second ORFs had significant similarities with the YajC and SecD proteins, respectively, of several bacterial species. Both the YajC and SecD proteins were expressed in Escherichia coli as fusion proteins with maltose binding protein (MBP). In Western blots, sera from mice vaccinated with B. abortus RB51 recognized YajC but not SecD. Further Western blot analysis with purified recombinant YajC protein indicated that mice inoculated with B. abortus19 or 2308 or B. melitensis RM1 also produced antibodies to YajC. In response to in vitro stimulation with recombinant MBP-YajC fusion protein, splenocytes from mice vaccinated with B. abortus RB51 were able to proliferate and produce gamma interferon but not interleukin-4. This study demonstrates, for the first time, the involvement of YajC protein in an immune response to an infectious agent.


1998 ◽  
Vol 72 (2) ◽  
pp. 1482-1490 ◽  
Author(s):  
Lin-Fa Wang ◽  
Wojtek P. Michalski ◽  
Meng Yu ◽  
L. Ian Pritchard ◽  
Gary Crameri ◽  
...  

ABSTRACT In 1994, a new member of the family Paramyxoviridaeisolated from fatal cases of respiratory disease in horses and humans was shown to be distantly related to morbilliviruses and provisionally called equine morbillivirus (K. Murray et al., Science 268:94–97, 1995). To facilitate characterization and classification, the virus was purified, viral proteins were identified, and the P/V/C gene was cloned and sequenced. The coding strategy of the gene is similar to that of Sendai and measles viruses, members of the Paramyxovirusand Morbillivirus genera, respectively, in the subfamilyParamyxovirinae. The P/V/C gene contains four open reading frames, three of which, P, C, and V, have Paramyxovirinaecounterparts. The P and C proteins are larger and smaller, respectively, than are cognate proteins in members of the subfamily, and the V protein is made as a result of a single G insertion during transcription. The P/V/C gene has two unique features. (i) A fourth open reading frame is located between those of the C and V proteins and potentially encodes a small basic protein similar to those found in some members of the Rhabdoviridae andFiloviridae families. (ii) There is also a long untranslated 3′ sequence, a feature common in Filoviridaemembers. Sequence comparisons confirm that although the virus is a member of the Paramyxovirinae subfamily, it displays only low levels of homology with paramyxoviruses and morbilliviruses and negligible homologies with rubulaviruses.


2017 ◽  
Vol 3 (6) ◽  
pp. 234
Author(s):  
Rahmahani J ◽  
Handijatno D ◽  
Tyaningsih W ◽  
Suwarno Suwarno

The aims of this research is to determine the ability of sub unit lipopolysacharide(LPS) vaccine of Brucella abortus strain S-19 in mice and goat, including IgM and sub classes IgG antibody humoral response, cellular mediated immune response (IL-2, IFN- γ) in mice, also IgG as humoral immunity, IL-4 and IL-12 as cellular immunity, comparison affectivity with Brucella abortus strain RB-51 vaccine in goat . This research has two steps methods. Step first, 30 Balb C mice were divided into 3 groups and vaccinated subcutaneously, First group injectedB. abortus S-19, second group injected LPS and third group injected sodium chloride solution. Booster vaccination was conducted every two weeks till the eight week after first vaccination. The second step performed vaccinated to 30 goats divided into three groups. First group was injected by subcutaneous LPS 50 µg/ml and second group injected LPS 100 µg/ml and the third group injected with sodium chloride as control. Booster vaccination conducted 2 weeks after first vaccination and second vaccination. Result of the research conferred. Result research, antibody response in mice showed vaccination by LPS of B. abortus S-19 showed higher titer than vaccination by whole cells but inverse cellular response. The both vaccines showed induce subclass antibody response, vaccination by LPS tendency to IgM response but vaccination by Whole cells active vaccine tendency to IgG1, IgG 2a and IgG2b. Response antibody in goat on two weeks after first vaccination, vaccination with LPS of B. abortus S-19, dose 50 µg/ml failed or zero titer IgG response but dose 100 µg/ml was 500response antibody on two weeks after second vaccination by dose 50 µg/ml was 340 but by dose 100 µg/ml was 960, while cellular IL-12 response two weeks after first vaccination by dose 50 µg/ml was 22.88 pg/ml but by 100 µg/ml was 62.15 pg/ml. Response cellular IL -12 two weeks after second vaccination 50 µg/ml was 12.04 pg/ml while by dose100 µg/ml was 130.88pg/ml    Cellular immune response IL-4 on two weeks after first vaccination, dose 50 µg/ml showed 55.57 pg/ml but by dose100 µg/ml was 49.35 pg/ ml. Response cellular IL-4 on two weeks after second vaccination by dose 50 µg/ml  was 22.17 pg/ml but by dose 100 µg/ml was 143.89 pg/ml Keyword: Vaccine sub-unit LPS of Brucella abortus S-19, Humoral antibody, Cellular antibody


Sign in / Sign up

Export Citation Format

Share Document