scholarly journals Authentication Protocols for Internet of Things: A Comprehensive Survey

2017 ◽  
Vol 2017 ◽  
pp. 1-41 ◽  
Author(s):  
Mohamed Amine Ferrag ◽  
Leandros A. Maglaras ◽  
Helge Janicke ◽  
Jianmin Jiang ◽  
Lei Shu

In this paper, a comprehensive survey of authentication protocols for Internet of Things (IoT) is presented. Specifically more than forty authentication protocols developed for or applied in the context of the IoT are selected and examined in detail. These protocols are categorized based on the target environment: (1) Machine to Machine Communications (M2M), (2) Internet of Vehicles (IoV), (3) Internet of Energy (IoE), and (4) Internet of Sensors (IoS). Threat models, countermeasures, and formal security verification techniques used in authentication protocols for the IoT are presented. In addition a taxonomy and comparison of authentication protocols that are developed for the IoT in terms of network model, specific security goals, main processes, computation complexity, and communication overhead are provided. Based on the current survey, open issues are identified and future research directions are proposed.

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6163
Author(s):  
Wencheng Yang ◽  
Song Wang ◽  
Nor Masri Sahri ◽  
Nickson M. Karie ◽  
Mohiuddin Ahmed ◽  
...  

The large number of Internet-of-Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric-based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric-cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state-of-the-art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward-looking issues and future research directions.


Author(s):  
Maha Saadeh ◽  
Azzam Sleit ◽  
Khair Eddin Sabri ◽  
Wesam Almobaideen

Internet of Things (IoT) is considered as the future of the Internet that connects billions of objects all together. Trusted communication between these objects is a crucial requirement for the wide deployment of IoT services. Consequently, effective authentication procedures should be applied between the communicating objects. This paper provides a comprehensive survey of object authentication in the IoT. The survey aims to direct future researchers in the field of IoT object authentication by delving into the details of authentication schemes and going through different comparisons. Comparisons are based on various criteria which include authentication process characteristics, the underlying architecture, key generation and distribution techniques, supporting IoT challenges, security analysis, and performance evaluation. Additionally, this survey highlights the main issues and challenges of IoT objects authentication and recommends future research directions.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-34
Author(s):  
Pengzhen Ren ◽  
Yun Xiao ◽  
Xiaojun Chang ◽  
Po-yao Huang ◽  
Zhihui Li ◽  
...  

Deep learning has made substantial breakthroughs in many fields due to its powerful automatic representation capabilities. It has been proven that neural architecture design is crucial to the feature representation of data and the final performance. However, the design of the neural architecture heavily relies on the researchers’ prior knowledge and experience. And due to the limitations of humans’ inherent knowledge, it is difficult for people to jump out of their original thinking paradigm and design an optimal model. Therefore, an intuitive idea would be to reduce human intervention as much as possible and let the algorithm automatically design the neural architecture. Neural Architecture Search ( NAS ) is just such a revolutionary algorithm, and the related research work is complicated and rich. Therefore, a comprehensive and systematic survey on the NAS is essential. Previously related surveys have begun to classify existing work mainly based on the key components of NAS: search space, search strategy, and evaluation strategy. While this classification method is more intuitive, it is difficult for readers to grasp the challenges and the landmark work involved. Therefore, in this survey, we provide a new perspective: beginning with an overview of the characteristics of the earliest NAS algorithms, summarizing the problems in these early NAS algorithms, and then providing solutions for subsequent related research work. In addition, we conduct a detailed and comprehensive analysis, comparison, and summary of these works. Finally, we provide some possible future research directions.


2021 ◽  
Vol 23 (2) ◽  
pp. 13-22
Author(s):  
Debmalya Mandal ◽  
Sourav Medya ◽  
Brian Uzzi ◽  
Charu Aggarwal

Graph Neural Networks (GNNs), a generalization of deep neural networks on graph data have been widely used in various domains, ranging from drug discovery to recommender systems. However, GNNs on such applications are limited when there are few available samples. Meta-learning has been an important framework to address the lack of samples in machine learning, and in recent years, researchers have started to apply meta-learning to GNNs. In this work, we provide a comprehensive survey of different metalearning approaches involving GNNs on various graph problems showing the power of using these two approaches together. We categorize the literature based on proposed architectures, shared representations, and applications. Finally, we discuss several exciting future research directions and open problems.


2022 ◽  
Author(s):  
Farkhanda Zafar ◽  
Hasan Ali Khattak ◽  
Moayad Aloqaily ◽  
Rasheed Hussain

Owing to the advancements in communication and computation technologies, the dream of commercialized connected and autonomous cars is becoming a reality. However, among other challenges such as environmental pollution, cost, maintenance, security, and privacy, the ownership of vehicles (especially for Autonomous Vehicles (AV)) is the major obstacle in the realization of this technology at the commercial level. Furthermore, the business model of pay-as-you-go type services further attracts the consumer because there is no need for upfront investment. In this vein, the idea of car-sharing ( aka carpooling) is getting ground due to, at least in part, its simplicity, cost-effectiveness, and affordable choice of transportation. Carpooling systems are still in their infancy and face challenges such as scheduling, matching passengers interests, business model, security, privacy, and communication. To date, a plethora of research work has already been done covering different aspects of carpooling services (ranging from applications to communication and technologies); however, there is still a lack of a holistic, comprehensive survey that can be a one-stop-shop for the researchers in this area to, i) find all the relevant information, and ii) identify the future research directions. To fill these research challenges, this paper provides a comprehensive survey on carpooling in autonomous and connected vehicles and covers architecture, components, and solutions, including scheduling, matching, mobility, pricing models of carpooling. We also discuss the current challenges in carpooling and identify future research directions. This survey is aimed to spur further discussion among the research community for the effective realization of carpooling.


Author(s):  
Sajid Nisar ◽  
Osman Hasan

Telesurgical robotic systems allow surgeons to perform surgical operations from remote locations with enhanced comfort and dexterity. Introduction of robotic technology has revolutionized operation theaters but its multidisciplinary nature and high associated costs pose significant challenges. This chapter provides a comprehensive survey of the current progress in the field of surgical robotics with a detailed discussion on various state-of-the-art telesurgical robotic systems. The key design approaches and challenges are identified, and their solutions are recommended. A set of parameters that can be used to assess usefulness of a telesurgical robot are discussed. Finally, guidelines for selection of a suitable surgical system and the future research directions are described.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 62962-63003 ◽  
Author(s):  
Yasir Saleem ◽  
Noel Crespi ◽  
Mubashir Husain Rehmani ◽  
Rebecca Copeland

Sign in / Sign up

Export Citation Format

Share Document