scholarly journals EE-eICIC: Energy-Efficient Optimization of Joint User Association and ABS for eICIC in Heterogeneous Cellular Networks

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Zheng ◽  
Ling Gao ◽  
Hai Wang ◽  
Jinping Niu ◽  
Xiaoya Li ◽  
...  

The densification and expansion of heterogeneous cellular networks (HetNets) pose new challenges on interference management and reduction of energy consumption. The 3GPP has proposed enhanced intercell interference coordination (eICIC) by making a macrocell silent in almost blank subframes (ABSs) to mitigate interference for low power base stations (BSs) in HetNets. However, energy efficiency (EE) is very crucial for the deployment of a large number of low power nodes as they consume a lot of energy. In this work, we develop a novel EE-eICIC algorithm to determine the amount of ABSs and user equipment (UE) that should associate with picocells or macrocells from energy efficiency perspective. Due to the nonsmooth and mixed combinatorial features of this formulation, we focus on a suboptimal algorithm design. Using generalized fractional programming and the convex programming theory, we propose an iterative and relaxed-rounding algorithm to solve the problem. Numerical results illustrate that the proposed EE-eICIC algorithm achieves superior performance in comparison with state-of-the-art methods in terms of energy efficiency of both system and user.

2019 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Jie Yang ◽  
Ziyu Pan ◽  
Lihong Guo

Due to the dense deployment of base stations (BSs) in heterogeneous cellular networks (HCNs), the energy efficiency (EE) of HCN has attracted the attention of academia and industry. Considering its mathematical tractability, the Poisson point process (PPP) has been employed to model HCNs and analyze their performance widely. The PPP falls short in modeling the effect of interference management techniques, which typically introduces some form of spatial mutual exclusion among BSs. In PPP, all the nodes are independent from each other. As such, PPP may not be suitable to model networks with interference management techniques, where there exists repulsion among the nodes. Considering this, we adopt the Matérn hard-core process (MHCP) instead of PPP, in which no two nodes can be closer than a repulsion radius from one another. In this paper, we study the coverage performance and EE of a two-tier HCN modelled by Matérn hard-core process (MHCP); we abbreviate this kind of two-tier HCN as MHCP-MHCP. We first derive the approximate expression of coverage probability of MHCP-MHCP by extending the approximate signal to interference ratio analysis based on the PPP (ASAPPP) method to multi-tier HCN. The concrete SIR gain of the MHCP model relative to the PPP model is derived through simulation and data fitting. On the basis of coverage analysis, we derive and formulate the EE of MHCP-MHCP network. Simulation results verify the correctness of our theoretical analysis and show the performance difference between the MHCP-MHCP and PPP modelled network.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1495
Author(s):  
Noha Hassan ◽  
Xavier Fernando

Fifth-generation (5G) wireless networks and beyond will be heterogeneous in nature, with a mixture of macro and micro radio cells. In this scenario where high power macro base stations (MBS) coexist with low power micro base stations (mBS), it is challenging to ensure optimal usage of radio resources to serve users with a multitude of quality of service (QoS) requirements. Typical signal to interference and noise ratio (SINR)-based user allocation protocols unfairly assign more users to the high power MBS, starving mBS. There have been many attempts in the literature to forcefully assign users to mBS with limited success. In this paper, we take a different approach using second order statistics of user data, which is a better indicator of traffic fluctuations. We propose a new algorithm for user association to the appropriate base station (BS) by utilizing the standard deviation of the overall network load. This is done through an exhaustive search of the best user equipment (UE)–BS combinations that provide a global minimum to the standard deviation. This would correspond to the optimum number of UEs assigned to every BS, either macro or micro. We have also derived new expressions for coverage probability and network energy efficiency for analytical performance evaluation. Simulation results prove the validity of our proposed methods to balance the network load, improve data rate, average energy efficiency, and coverage probability with superior performance compared with other algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jiaqi Lei ◽  
Hongbin Chen ◽  
Feng Zhao

The energy efficiency (EE) is a key metric of ultradense heterogeneous cellular networks (HCNs). Earlier works on the EE analysis of ultradense HCNs by using the stochastic geometry tool only focused on the impact of the base station density ratio and ignored the function of different tiers. In this paper, a two-tier ultradense HCN with small-cell base stations (SBSs) and user equipments (UEs) densely deployed in a traditional macrocell network is considered. Firstly, the performance of the ultradense HCN in terms of the association probability, average link spectral efficiency (SE), average downlink throughput, and average EE is theoretically analyzed by using the stochastic geometry tool. Then, the problem of maximizing the average EE while meeting minimum requirements of the average link SE and average downlink throughput experienced by UEs in macrocell and small-cell tiers is formulated. As it is difficult to obtain the explicit expression of average EE, impacts of the SBS density ratio and signal-to-interference-plus-noise ratio (SINR) threshold on the network performance are investigated through numerical simulations. Simulation results validate the accuracy of theoretical results and demonstrate that the maximum value of average EE can be achieved by optimizing the SBS density ratio and the SINR threshold.


Author(s):  
Chungang Yang ◽  
Jia Xiao ◽  
Lingxia Wang ◽  
Pengyu Huang ◽  
Jiandong Li

In this chapter, we concentrate on different technical applications and research directions of pricing theory and methodology, where we investigate following technical applications and functions of pricing including cooperative incentive mechanism design, Pareto- and social optimality improvement, distributed algorithm design with the low signaling overhead. We first clarify different concepts of pricing, summarize the motivation, present a taxonomy according to these different technical applications. Then, we survey applications of pricing theory and methodology with understandings and observations in cognitive radio and multi-tier heterogeneous cellular networks. We emphasize some of the recent critical problems, such as the cooperation incentive, resource and interference management and economics of small cells. Finally, we conclude this chapter with the possible research directions and more potential network applications of pricing theory and methodology.


Sign in / Sign up

Export Citation Format

Share Document