scholarly journals Stochastic Geometry Analysis of Downlink Spectral and Energy Efficiency in Ultradense Heterogeneous Cellular Networks

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jiaqi Lei ◽  
Hongbin Chen ◽  
Feng Zhao

The energy efficiency (EE) is a key metric of ultradense heterogeneous cellular networks (HCNs). Earlier works on the EE analysis of ultradense HCNs by using the stochastic geometry tool only focused on the impact of the base station density ratio and ignored the function of different tiers. In this paper, a two-tier ultradense HCN with small-cell base stations (SBSs) and user equipments (UEs) densely deployed in a traditional macrocell network is considered. Firstly, the performance of the ultradense HCN in terms of the association probability, average link spectral efficiency (SE), average downlink throughput, and average EE is theoretically analyzed by using the stochastic geometry tool. Then, the problem of maximizing the average EE while meeting minimum requirements of the average link SE and average downlink throughput experienced by UEs in macrocell and small-cell tiers is formulated. As it is difficult to obtain the explicit expression of average EE, impacts of the SBS density ratio and signal-to-interference-plus-noise ratio (SINR) threshold on the network performance are investigated through numerical simulations. Simulation results validate the accuracy of theoretical results and demonstrate that the maximum value of average EE can be achieved by optimizing the SBS density ratio and the SINR threshold.

2019 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Jie Yang ◽  
Ziyu Pan ◽  
Lihong Guo

Due to the dense deployment of base stations (BSs) in heterogeneous cellular networks (HCNs), the energy efficiency (EE) of HCN has attracted the attention of academia and industry. Considering its mathematical tractability, the Poisson point process (PPP) has been employed to model HCNs and analyze their performance widely. The PPP falls short in modeling the effect of interference management techniques, which typically introduces some form of spatial mutual exclusion among BSs. In PPP, all the nodes are independent from each other. As such, PPP may not be suitable to model networks with interference management techniques, where there exists repulsion among the nodes. Considering this, we adopt the Matérn hard-core process (MHCP) instead of PPP, in which no two nodes can be closer than a repulsion radius from one another. In this paper, we study the coverage performance and EE of a two-tier HCN modelled by Matérn hard-core process (MHCP); we abbreviate this kind of two-tier HCN as MHCP-MHCP. We first derive the approximate expression of coverage probability of MHCP-MHCP by extending the approximate signal to interference ratio analysis based on the PPP (ASAPPP) method to multi-tier HCN. The concrete SIR gain of the MHCP model relative to the PPP model is derived through simulation and data fitting. On the basis of coverage analysis, we derive and formulate the EE of MHCP-MHCP network. Simulation results verify the correctness of our theoretical analysis and show the performance difference between the MHCP-MHCP and PPP modelled network.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Gao ◽  
Qing Ren ◽  
Pei Shang Gu ◽  
Xin Song

The widespread application of wireless mobile services and requirements of ubiquitous access have resulted in drastic growth of the mobile traffic and huge energy consumption in ultradense networks (UDNs). Therefore, energy-efficient design is very important and is becoming an inevitable trend. To improve the energy efficiency (EE) of UDNs, we present a joint optimization method considering user association and small-cell base station (SBS) on/off strategies in UDNs. The problem is formulated as a nonconvex nonlinear programming problem and is then decomposed into two subproblems: user association and SBS on/off strategies. In the user association strategy, users associate with base stations (BSs) according to their movement speeds and utility function values, under the constraints of the signal-to-interference ratio (SINR) and load balancing. In particular, taking care of user mobility, users are associated if their speed exceeds a certain threshold. The macrocell base station (MBS) considers user mobility, which prevents frequent switching between users and SBSs. In the SBS on/off strategy, SBSs are turned off according to their loads and the amount of time required for mobile users to arrive at a given SBS to further improve network energy efficiency. By turning off SBSs, negative impacts on user associations can be reduced. The simulation results show that relative to conventional algorithms, the proposed scheme achieves energy efficiency performance enhancements.


Author(s):  
Prapassorn Phaiwitthayaphorn ◽  
Kazuo Mori ◽  
Hideo Kobayashi ◽  
Pisit Boonsrimuang

The mobile traffic continuously grows at a rapid rate driven by the widespread use of wireless devices. Along with that, the demands for higher data rate and better coverage lead to increase in power consumption and operating cost of network infrastructure. The concept of heterogeneous networks (HetNets) has been proposed as a promising approach to provide higher coverage and capacity for cellular networks. HetNet is an advanced network consisting of multiple kinds of base stations, i.e., macro base station (MBS), and small base station (SBS). The overlay of many SBSs into the MBS coverage can provide higher network capacity and better coverage in cellular networks. However, the dense deployment of SBSs would cause an increase in the power consumption, leading to a decrease in the energy efficiency in downlink cellular networks. Another technique to improve energy efficiency while reducing power consumption in the network is to introduce sleep control for SBSs. This paper proposes cell throughput based sleep control which the cell capacity ratio for the SBSs is employed as decision criteria to put the SBSs into a sleep state. The simulation results for downlink communications demonstrate that the proposed scheme improves the energy efficiency, compared with the conventional scheme.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Junpeng Yu ◽  
Hongtao Zhang ◽  
Yuqing Chen ◽  
Yaduan Ruan

In 5G ultradense heterogeneous networks, wireless backhaul, as one of the important base station (BS) resources that affect user services, has attracted more and more attention. However, a user would access to the BS which is the nearest for the user based on the conventional user association scheme, which constrains the network performance improvement due to the limited backhaul capacity. In this paper, using backhaul-aware user association scheme, semiclosed expressions of network performance metrics are derived in ultradense heterogeneous networks, including coverage probability, rate coverage, and network delay. Specifically, all possible access and backhaul links within the user connectable range of BSs and anchor base stations (A-BSs) are considered to minimize the analytical results of outage probability. The outage for the user occurs only when the access link or backhaul link which forms the link combination with the optimal performance is failure. Furthermore, the theoretical analysis and numerical results evaluate the impact of the fraction of A-BSs and the BS-to-user density ratio on network performance metric to seek for a more reasonable deployment of BSs in the practical scenario. The simulation results show that the coverage probability of backhaul-aware user association scheme is improved significantly by about 2× compared to that of the conventional user association scheme when backhaul is constrained.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Zheng ◽  
Ling Gao ◽  
Hai Wang ◽  
Jinping Niu ◽  
Xiaoya Li ◽  
...  

The densification and expansion of heterogeneous cellular networks (HetNets) pose new challenges on interference management and reduction of energy consumption. The 3GPP has proposed enhanced intercell interference coordination (eICIC) by making a macrocell silent in almost blank subframes (ABSs) to mitigate interference for low power base stations (BSs) in HetNets. However, energy efficiency (EE) is very crucial for the deployment of a large number of low power nodes as they consume a lot of energy. In this work, we develop a novel EE-eICIC algorithm to determine the amount of ABSs and user equipment (UE) that should associate with picocells or macrocells from energy efficiency perspective. Due to the nonsmooth and mixed combinatorial features of this formulation, we focus on a suboptimal algorithm design. Using generalized fractional programming and the convex programming theory, we propose an iterative and relaxed-rounding algorithm to solve the problem. Numerical results illustrate that the proposed EE-eICIC algorithm achieves superior performance in comparison with state-of-the-art methods in terms of energy efficiency of both system and user.


Sign in / Sign up

Export Citation Format

Share Document