scholarly journals Effect of Microwave Heating on the Dielectric Properties and Components of Iron-Fortified Milk

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Xiao-shu Tang ◽  
Da-ming Fan ◽  
Feng Hang ◽  
Bo-wen Yan ◽  
Jian-xin Zhao ◽  
...  

With the iron-fortified milk as research object, this paper makes a research on the influence of iron on the dielectric properties and wave absorption properties and effect of nutritional components, such as casein and whey protein in milk, and thermostability in the process of microwave heating, and rapid heat transfer method in ferrous gluconate–milk and ferrous chloride–milk, respectively. The results show that the iron of ionic form has greater influence to convert microwave to heat energy and the effect of microwave absorption properties was greater for ferrous chloride than for ferrous gluconate at high concentration. The effect of different forms of iron on the composition of milk was different, and the composition of milk systems was more stable by microwave heating, but the rapid heat transfer method is superior in the aim of increasing the nutritional value of milk. The ferrous gluconate–milk system has a better thermal stability than ferrous chloride–milk system. From the aspect of dielectric induction, the paper discovers the response rules of iron and evaluates the microwave thermal safety of the traditional and the iron-fortified products by microwave heating.

2021 ◽  
Vol 32 ◽  
pp. 249-256
Author(s):  
Yafeng Li ◽  
Anvesh Dhulipalla ◽  
Jian Zhang ◽  
Hye-Yeong Park ◽  
Yeon-Gil Jung ◽  
...  

Author(s):  
Bin Du ◽  
Mei Cai ◽  
Xuan Wang ◽  
Junjie Qian ◽  
Chao He ◽  
...  

AbstractNowadays, metal oxide-based electromagnetic wave absorbing materials have aroused widely attentions in the application of telecommunication and electronics due to their selectable mechanical and outstanding dielectric properties. Herein, the binary ZnO/NiCo2O4 nanoparticles were successfully synthesized via hydrothermal reaction and the electromagnetic wave absorption properties of the composites were investigated in detail. As a result, benefiting from the dielectric loss, the as-obtained ZnO/NiCo2O4-7 samples possessed a minimum reflection loss value of −33.49 dB at 18.0 GHz with the thickness of 4.99 mm. This work indicates that ZnO/NiCo2O4 composites have the promising candidate applications in electromagnetic wave absorption materials in the future.


Author(s):  
Christoph Starke ◽  
Erik Janke ◽  
Toma´sˇ Hofer ◽  
Davide Lengani

Recent development in commercial CFD codes offers possibilities to include the solid body in order to perform conjugate heat transfer computations for complex geometries. The current paper aims to analyse the differences between a conjugate heat transfer computation and conventional uncoupled approaches where a heat transfer coefficient is first derived from a flow solution and then taken as boundary condition for a thermal conduction analysis of the solid part. Whereas the thermal analyses are done with a Rolls-Royce in-house finite element code, the CFD as well as the conjugate heat transfer computation are done using the new version 8 of the commercial code Fine Turbo from Numeca International. The analysed geometry is a turbine cascade that was tested by VKI in Brussels within the European FP6 project AITEB 2. First, the paper presents the aerodynamic results. The pure flow solutions are validated against pressure measurements of the cascade test. Then, the heat transfer from flow computations with wall temperature boundary conditions is compared to the measured heat transfer. Once validated, the heat transfer coefficients are used as boundary condition for three uncoupled thermal analyses of the blade to predict its surface temperatures in a steady state. The results are then compared to a conjugate heat transfer method. Therefore, a mesh of the solid blade was added to the validated flow computation. The paper will present and compare the results of conventional uncoupled thermal analyses with different strategies for the wall boundary condition to results of a conjugate heat transfer computation. As it turns out, the global results are similar but especially the over-tip region with its complex geometry and flow structure and where effective cooling is crucial shows remarkable differences because the conjugate heat transfer solution predicts lower blade tip temperatures. This will be explained by the missing coupling between the fluid and the solid domain.


Author(s):  
Long-gang Liu ◽  
Chun-wei Gu ◽  
Xiao-dong Ren

Convective cooling channels are applied in a two-dimensional compressor vane to use the intercooling method to improve the efficiency of Brayton cycle and reduce the temperature of the vane. In this paper, we analyze the effect of coolant to the aerodynamic performance and heat transfer performance of the main stream and the vane. For the case of a two-dimensional compressor vane NACA65-(12A2I8b)10, the vane which has five convective cooling channels has been numerically simulated in different test conditions by discontinuous Galerkin (DG) method. The coolant is supercritical carbon dioxide whose pressure is 10MPa. Conjugate heat transfer method has been used in this paper. The numerical simulation result is similar to the experiment data and has been compared with the result of the vane without cooling channels to prove the effect of cooling channels. Cooling channels have large effect on the distribution of temperature and heat transfer coefficient. In addition, the relationship between Nu and Re on the fluid-solid interface has been analyzed and a suitable empirical equation has been obtained. This work analyzes the effect of intercooling system in the compressor and give several advice on future engineering applications in aero engines and gas turbines.


2017 ◽  
Vol 42 (2) ◽  
pp. e13468
Author(s):  
Pu Guang Yi ◽  
Pu Cheng Xi ◽  
Jun Wang ◽  
Song Chun Fang

2011 ◽  
Vol 43 (3) ◽  
pp. 1070-1078 ◽  
Author(s):  
Zhiwei Peng ◽  
Jiann-Yang Hwang ◽  
Chong-Lyuck Park ◽  
Byoung-Gon Kim ◽  
Gerald Onyedika

Author(s):  
Majid Karami ◽  
Somayeh Davoodabadi Farahani ◽  
Farshad Kowsary ◽  
Amir Mosavi

In this research, a novel method to investigation the transient heat transfer coefficient in a channel is suggested experimentally, in which the water flow, itself, is considered both just liquid phase and liquid-vapor phase. The experiments were designed to predict the temporal and spatial resolution of Nusselt number. The inverse technique method is non-intrusive, in which time history of temperature is measured, using some thermocouples within the wall to provide input data for the inverse algorithm. The conjugate gradient method is used mostly as an inverse method. The temporal and spatial changes of heat flux, Nusselt number, vapor quality, convection number, and boiling number have all been estimated, showing that the estimated local Nusselt numbers of flow for without and with phase change are close to those predicted from the correlations of Churchill and Ozoe (1973) and Kandlikar (1990), respectively. This study suggests that the extended inverse technique can be successfully utilized to calculate the local time-dependent heat transfer coefficient of boiling flow.


Sign in / Sign up

Export Citation Format

Share Document