scholarly journals A Lifetime Optimization Algorithm Limited by Data Transmission Delay and Hops for Mobile Sink-Based Wireless Sensor Networks

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yourong Chen ◽  
Xiaowen Lv ◽  
Siyi Lu ◽  
Tiaojuan Ren

To improve the lifetime of mobile sink-based wireless sensor networks and considering that data transmission delay and hops are limited in actual system, a lifetime optimization algorithm limited by data transmission delay and hops (LOA_DH) for mobile sink-based wireless sensor networks is proposed. In LOA_DH, some constraints are analyzed, and an optimization model is proposed. Maximum capacity path routing algorithm is used to calculate the energy consumption of communication. Improved genetic algorithm which modifies individuals to meet all constraints is used to solve the optimization model. The optimal solution of sink node’s sojourn grid centers and sojourn times which maximizes network lifetime is obtained. Simulation results show that, in three node distribution scenes, LOA_DH can find the movement solution of sink node which covers all sensor nodes. Compared with MCP_RAND, MCP_GMRE, and EASR, the solution improves network lifetime and reduces average amount of node discarded data and average energy consumption of nodes.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yourong Chen ◽  
Zhangquan Wang ◽  
Tiaojuan Ren ◽  
Yaolin Liu ◽  
Hexin Lv

In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS) is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.


Wireless sensor networks (WSN) are gaining attention in numerous fields with the advent of embedded systems and IoT. Wireless sensors are deployed in environmental conditions where human intervention is less or eliminated. Since these are not human monitored, powering and maintaining the energy of the node is a challenging issue. The main research hotspot in WSN is energy consumption. As energy drains faster, the network lifetime also decreases. Self-Organizing Networks (SON) are just the solution for the above-discussed problem. Self-organizing networks can automatically configure themselves, find an optimalsolution, diagnose and self-heal to some extent. In this work, “Implementation of Enhanced AODV based Self-Organized Tree for Energy Balanced Routing in Wireless Sensor Networks” is introduced which uses self-organization to balance energy and thus reduce energy consumption. This protocol uses combination of number of neighboring nodes and residual energy as the criteria for efficient cluster head election to form a tree-based cluster structure. Threshold for residual energy and distance are defined to decide the path of the data transmission which is energy efficient. The improvement made in choosing robust parameters for cluster head election and efficient data transmission results in lesser energy consumption. The implementation of the proposed protocol is carried out in NS2 environment. The experiment is conducted by varying the node density as 20, 40 and 60 nodes and with two pause times 5ms, 10ms. The analysis of the result indicates that the new system consumes 17.6% less energy than the existing system. The routing load, network lifetime metrics show better values than the existing system.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877253 ◽  
Author(s):  
Anfeng Liu ◽  
Wei Chen ◽  
Xiao Liu

In order to solve the problem of spectrum scarcity in wireless sensor networks, cognitive radio technology can be introduced into wireless sensor networks, giving rising to cognitive radio sensor networks. Delay-sensitive data applications in cognitive radio sensor networks require efficient real-time communication. Opportunistic pipeline routing is a potential technology to reduce the delay, which can use nodes outside the main forwarding path forward data opportunistically when the transmission fails. However, the energy efficiency of cognitive radio sensor networks with opportunistic pipeline routing is low, and the data transmission delay can be further optimized. In view of this situation, we propose the delay optimal opportunistic pipeline routing scheme named Variable Duty Cycle for Opportunistic Pipeline Routing (VDCOPR). In the Variable Duty Cycle for Opportunistic Pipeline Routing scheme, the nodes employ high duty cycle in the area far from the sink, and low duty cycle in the area near to the sink, which can achieve the balance of energy consumption and reduce the data transmission delay while not affecting network lifetime. The theoretical analysis and experimental results show that, compared with previous opportunistic pipeline routing, energy consumption of network is relatively balanced and the data transmission delay can be reduced by 36.6% in the Variable Duty Cycle for Opportunistic Pipeline Routing scheme.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Kambiz Koosheshi

AbstractIn this study, we present two novel protocols for optimizing energy consumption in heterogeneous wireless sensor networks for supervising the environment and multi-target detecting and tracking in real large-scale areas. The use of mobile sink in wireless sensor networks, despite its numerous advantages, is impossible in the majority of environments. Hence, by utilization of a novel scheme for duty cycle integrated with fuzzy logic, despite using a fixed base station, the propose protocol can enhance network lifetime even more than those protocols which use mobile sink for data collection. In this protocol, by introducing an unequal clustering method based on fuzzy logic, the possibility of energy holes problem is very far from expectation. Simulation of the proposed protocol through Matlab indicated that the proposed method outperformed other available methods with regard to preventing energy hole. Consequently, network lifetime is enhanced even in large-sized networks.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Author(s):  
Fuseini Jibreel ◽  
Emmanuel Tuyishimire ◽  
I M Daabo

Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from the hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, less data transmission to the Base station (BS). In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol ( HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. Results show that the proposed routing scheme outperforms two existing ones.


Sign in / Sign up

Export Citation Format

Share Document