scholarly journals Two novel protocols for optimizing energy consumption in heterogeneous wireless sensor networks using fuzzy logic for monitoring, diagnosis and target tracking

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Kambiz Koosheshi

AbstractIn this study, we present two novel protocols for optimizing energy consumption in heterogeneous wireless sensor networks for supervising the environment and multi-target detecting and tracking in real large-scale areas. The use of mobile sink in wireless sensor networks, despite its numerous advantages, is impossible in the majority of environments. Hence, by utilization of a novel scheme for duty cycle integrated with fuzzy logic, despite using a fixed base station, the propose protocol can enhance network lifetime even more than those protocols which use mobile sink for data collection. In this protocol, by introducing an unequal clustering method based on fuzzy logic, the possibility of energy holes problem is very far from expectation. Simulation of the proposed protocol through Matlab indicated that the proposed method outperformed other available methods with regard to preventing energy hole. Consequently, network lifetime is enhanced even in large-sized networks.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4156
Author(s):  
Muhammad Salah ud din ◽  
Muhammad Atif Ur Rehman ◽  
Rehmat Ullah ◽  
Chan-Won Park ◽  
Byung Seo Kim

The participating nodes in Wireless Sensor Networks (WSNs) are usually resource-constrained in terms of energy consumption, storage capacity, computational capability, and communication range. Energy is one of the major constraints which requires an efficient mechanism that takes into account the energy consumption of nodes to prolong the network lifetime. Particularly in the large scale heterogeneous WSNs, this challenge becomes more critical due to high data collection rate and increased number of transmissions. To this end, clustering is one of the most popular mechanisms which is being used to minimize the energy consumption of nodes and prolong the lifetime of the network. In this paper, therefore, we propose a robust clustering mechanism for energy optimization in heterogeneous WSNs. In the proposed scheme, nodes declare themselves as cluster head (CH) based on available resources such as residual energy, available storage and computational capability. The proposed scheme employs the multi criteria decision making technique named as Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) which allows the child nodes to select the optimal CH among several potential CH candidates. Moreover, we also propose mechanisms such as CH-acquaintanceship and CH-friendship in order to prolong the network lifetime. Simulation results show that our proposed scheme minimizes the control overhead, reduces the power consumption and enhances overall lifetime of the network by comparing with the most recent and relevant proposed protocol for WSNs.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Aiping Pang ◽  
Hongbo Zhou ◽  
Junjie Ge

In the water area monitoring of the traditional wireless sensor networks (WSNs), the monitoring data are mostly transmitted to the base station through multihop. However, there are many problems in multihop transmission in traditional wireless sensor networks, such as energy hole, uneven energy consumption, unreliable data transmission, and so on. Based on the high maneuverability of unmanned aerial vehicles (UAVs), a mobile data collection scheme is proposed, which uses UAV as a mobile sink node in WSN water monitoring and transmits data wirelessly to collect monitoring node data efficiently and flexibly. In order to further reduce the energy consumption of UAV, the terminal nodes are grouped according to the dynamic clustering algorithm and the nodes with high residual energy in the cluster are selected as cluster head nodes. Then, according to the characteristics of sensor nodes with a certain range of wireless signal coverage, the angular bisection method is introduced on the basis of the traditional ant colony algorithm to plan the path of UAV, which further shortens the length of the mobile path. Finally, the effectiveness and correctness of the method are proved by simulation and experimental tests.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jia Xu ◽  
Chuan Ping Wang ◽  
Hua Dai ◽  
Da Qiang Zhang ◽  
Jing Jie Yu

TheMobile Sinkbased data collection in wireless sensor network can reduce energy consumption efficiently and has been a new data collection paradigm. In this paper, we focus on exploring polynomial algorithm to compute the constrained trajectory of theMobile Sinkfor data collection. We first present a universal system model for designing constrained trajectory in large-scale wireless sensor networks and formulate the problem as theMaximizing Energy Reduction for Constrained Trajectory(MERC) problem. We show that the MERC problem is NP-hard and design an approximation algorithm (CTMER), which follows the greedy approach to design the movement trajectory of theMobile Sinkby maximizing theeffective average energy reduction. Through both rigid theoretical analysis and extensive simulations, we demonstrate that our algorithm achieves high computation efficiency and is superior to otherMobile Sinkbased data collection methods in aspects of energy consumption and network lifetime.


2021 ◽  
Author(s):  
Rouzbeh Behrouz

Energy efficient operation is a critical issue that has to be addressed with large-scale wireless sensor networks deployments. Cluster-based protocols are developed to tackle this problem and Low Energy Adaptive Clustering Hierarchy (LEACH) is one of the best-known protocols of this type. However, certain aspects of LEACH offer room for improvement. One such aspect is the arrangement of wireless sensor network with the fixed base station location. In this thesis we purpose Fuzzy Logic for Mobile Base Station (FLMBS) protocol that is based on LEACH but uses a Fuzzy Inference System driven approach to adjust the location of the base station. FLMBS produces reasonable improvement over LEACH in a network area greater than 1000 x 1000 m


Author(s):  
Mohammad Sedighimanesh ◽  
Hesam Zandhesami ◽  
Ali Sedighimanesh

Background: Wireless sensor networks are considered as one of the 21st century's most important technologies. Sensors in wireless sensor networks usually have limited and sometimes non-rechargeable batteries, which they are supposed to be preserved for months or even years. That's why the energy consumption in these networks is of a great importance. Objective: One way to improve energy consumption in a wireless sensor network is to use clustering. In clustered networks, one node is known as the cluster head and other nodes as normal members, which normal nodes send the collected data to the cluster head, and the cluster head sends the information to the base station either by a single step or by multiple steps. Method: Using clustering simplifies resource management and increases scalability, reliability, and the network lifetime. Although the cluster formation involves a time- overhead and how to choose the cluster head is another problem, but its advantages are more than its disadvantages. : The primary aim of this study is to offer a solution to reduce energy consumption in the sensor network. In this study, during the selection of cluster heads, Honeybee Algorithm is used and also for routing, Harmonic Search Algorithm is used. In this paper, the simulation is performed by using MATLAB software and the proposed method is compared with the Low Energy Adaptive Clustering Hierarchy (LEACH) and the multi-objective fuzzy clustering algorithm (MOFCA). Result and Conclusion: By simulations of this study, we conclude that this research has remarkably increased the network lifetime with respect to EECS, LEACH, and MOFCA algorithms. In view of the energy constraints of the wireless sensor network and the non-rechargeable batteries in most cases, providing such solutions and using metaheuristic algorithms can result in a significant reduction in energy consumption and, consequently, increase in the network lifetime.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yourong Chen ◽  
Zhangquan Wang ◽  
Tiaojuan Ren ◽  
Yaolin Liu ◽  
Hexin Lv

In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS) is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.


2021 ◽  
Author(s):  
Rouzbeh Behrouz

Energy efficient operation is a critical issue that has to be addressed with large-scale wireless sensor networks deployments. Cluster-based protocols are developed to tackle this problem and Low Energy Adaptive Clustering Hierarchy (LEACH) is one of the best-known protocols of this type. However, certain aspects of LEACH offer room for improvement. One such aspect is the arrangement of wireless sensor network with the fixed base station location. In this thesis we purpose Fuzzy Logic for Mobile Base Station (FLMBS) protocol that is based on LEACH but uses a Fuzzy Inference System driven approach to adjust the location of the base station. FLMBS produces reasonable improvement over LEACH in a network area greater than 1000 x 1000 m


2021 ◽  
Vol 11 (22) ◽  
pp. 10924
Author(s):  
Fatma H. Elfouly ◽  
Rabie A. Ramadan ◽  
Ahmed Y. Khedr ◽  
Ahmad Taher Azar ◽  
Kusum Yadav ◽  
...  

 Wireless Sensor Networks (WSNs) became essential in developing many applications, including smart cities and Internet of Things (IoT) applications. WSN has been used in many critical applications such as healthcare, military, and transportation. Such applications depend mainly on the performance of the deployed sensor nodes. Therefore, the deployment process has to be perfectly arranged. However, the deployment process for a WSN is challenging due to many of the constraints to be taken into consideration. For instance, mobile nodes are already utilized in many applications, and their localization needs to be considered during the deployment process. Besides, heterogeneous nodes are employed in many recent applications due to their efficiency and cost-effectiveness. Moreover, the development areas might have different properties due to their importance. Those parameters increase the deployment complexity and make it hard to reach the best deployment scheme. This work, therefore, seeks to discover the best deployment plan for a WSN, considering these limitations throughout the deployment process. First, the deployment problem is defined as an optimization problem and mathematically formulated using Integer Linear Programming (ILP) to understand the problem better. The main objective function is to maximize the coverage of a given field with a network lifetime constraint. Nodes’ mobility and heterogeneity are added to the deployment constraints. The importance of the monitored field subareas is also introduced in this paper, where some subareas could have more importance than others. The paper utilizes Swarm Intelligence as a heuristic algorithm for the large-scale deployment problem. Simulation experiments show that the proposed algorithm produces efficient deployment schemes with a high coverage rate and minimum energy consumption compared to some recent algorithms. The proposed algorithm shows more than a 30% improvement in coverage and network lifetime. 


Sign in / Sign up

Export Citation Format

Share Document