scholarly journals A Subpixel Matching Method for Stereovision of Narrow Baseline Remotely Sensed Imagery

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Ning Ma ◽  
Peng-fei Sun ◽  
Yu-bo Men ◽  
Chao-guang Men ◽  
Xiang Li

In this paper, an accurate and efficient image matching method based on phase correlation is proposed to estimate disparity with subpixel precision, which is used for the stereovision of narrow baseline remotely sensed images. The multistep strategy is adopted in our technical frame; thus the disparity estimation is divided into two steps: integer-pixel prematching and subpixel matching. Firstly, integer-pixel disparity is estimated by employing a cross-based local matching method. Then the relationship of corresponding points is established under the guidance of integer-pixel disparity. The subimages are extracted through selecting the corresponding points as the center. Finally, the subpixel disparity is obtained by matching the subimages utilizing a novel variant of phase correlation approach. The experiment results show that the proposed method can match different kinds of large-sized narrow baseline remotely sensed images and estimate disparity with subpixel precision automatically.

2021 ◽  
Vol 13 (17) ◽  
pp. 3535
Author(s):  
Zhongli Fan ◽  
Li Zhang ◽  
Yuxuan Liu ◽  
Qingdong Wang ◽  
Sisi Zlatanova

Accurate geopositioning of optical satellite imagery is a fundamental step for many photogrammetric applications. Considering the imaging principle and data processing manner, SAR satellites can achieve high geopositioning accuracy. Therefore, SAR data can be a reliable source for providing control information in the orientation of optical satellite images. This paper proposes a practical solution for an accurate orientation of optical satellite images using SAR reference images to take advantage of the merits of SAR data. Firstly, we propose an accurate and robust multimodal image matching method to match the SAR and optical satellite images. This approach includes the development of a new structural-based multimodal applicable feature descriptor that employs angle-weighted oriented gradients (AWOGs) and the utilization of a three-dimensional phase correlation similarity measure. Secondly, we put forward a general optical satellite imagery orientation framework based on multiple SAR reference images, which uses the matches of the SAR and optical satellite images as virtual control points. A large number of experiments not only demonstrate the superiority of the proposed matching method compared to the state-of-the-art methods but also prove the effectiveness of the proposed orientation framework. In particular, the matching performance is improved by about 17% compared with the latest multimodal image matching method, namely, CFOG, and the geopositioning accuracy of optical satellite images is improved, from more than 200 to around 8 m.


Author(s):  
X. Wan ◽  
J. Liu ◽  
H. Yan

This paper aims at image matching under significantly different illumination conditions, especially illumination angle changes, without prior knowledge of lighting conditions. We investigated the illumination impact on Phase Correlation (PC) matrix by mathematical derivation and from which, we decomposed PC matrix as the multiplication product of the illumination impact matrix and the translation matrix. Thus the robustness to illumination variation of the widely used Absolute Dirichlet Curve-fitting (AD-CF) algorithm for pixel-wise disparity estimation is proved. Further, an improved PC matching algorithm is proposed: Absolute Dirichlet SVD (AD-SVD), to achieve illumination invariant image alignment. Experiments of matching DEM simulated terrain shading images under very different illumination angles demonstrated that AD-SVD achieved 1/20 pixels accuracy for image alignment and it is nearly entirely invariant to daily and seasonal solar position variation. The AD-CF algorithm was tested for generating disparity map from multi-illumination angle stereo pairs and the results demonstrated high fidelity to the original DEM and the Normalised Correlation Coefficient (NCC) between the two is 0.96.


2019 ◽  
Vol 8 (10) ◽  
pp. 464
Author(s):  
Shimin Fang ◽  
Xiaoguang Zhou ◽  
Jing Zhang

Considering the multiscale characteristics of the human visual system and any natural scene, the spatial autocorrelation of remotely sensed imagery, and the multilevel spatial structure of ground targets in remote sensing images, an information-measurement approach based on a single-level geometrical mapping model can only reflect partial feature information at a single level (e.g., global statistical information and local spatial distribution information). The single mapping model cannot validly characterize the information of the multilevel and multiscale features of the spatial structures inherent in remotely sensed images. Additionally, the validity, practicability, and application range of the results of single-level mapping models are greatly limited in practical applications. In this paper, we present the multilevel geometrical mapping entropy (MGME) model to evaluate the information content of related attribute characteristics contained in remotely sensed images. Subsequently, experimental images with different types of objects, including reservoir area, farmland, water area (i.e., water and trees), and mountain area, were used to validate the performance of the proposed method. Experimental results show that the proposed method can not only reflect the difference in the information of images in terms of spectrum features, spatial structural features, and visual perception but also eliminates the inadequacy of a single-level mapping model. That is, the multilevel mapping strategy is feasible and valid. Additionally, the vector set of the MGME method and its standard deviation (Std) value can be used to further explore and study the spatial dependence of ground scenes and the difference in the spatial structural characteristics of different objects.


2012 ◽  
Vol 524-527 ◽  
pp. 3870-3874 ◽  
Author(s):  
Yuan Hang Cheng ◽  
Xiao Wei Han

Abstract:Proposed a method of document image matching based on SIFT-Harris operator, Use of SIFT-Harris operator to accurately search match for the same name point. First use SIFT operator for the coarse search match to find out a rough affine transformation relationship of matched Image and based image, Then used the Harris operator and gray correlation matching algorithm refined search. It improved the matching speed and accuracy. Experimental results show that the method works well for document image matching.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2297
Author(s):  
Lirong Liu ◽  
Junfeng Xie ◽  
Xinming Tang ◽  
Chaofeng Ren ◽  
Jiyi Chen ◽  
...  

The GF-7 satellite is China’s first high-resolution stereo mapping satellite that reaches sub-meter resolution, equipped with new-type payloads, such as an area array footprint camera that can achieve synchronization acquisition of laser spots. When the satellite is in space, the variation of camera parameters may occur due to launch vibration and environmental changes, and on-orbit geometric calibration thereby must be made. Coupled with the data from the GF-7 satellite, this paper constructs a geometric imaging model of the area array footprint camera based on the two-dimensional direction angle, and proposes a coarse-to-fine “LPM-SIFT + Phase correlation” matching strategy for the automatic extraction of calibration control points. The single-image calibration experiment shows that the on-orbit geometric calibration model of the footprint camera constructed in this paper is correct and effective. The matching method proposed is used to register the footprint images with the DOM (Digital Orthophoto Map) reference data to obtain dense control points. Compared with the calibration result using a small number of manually collected control points, the root mean square error (RMSE) of the residual of the control points is improved from half a pixel to 1/3, and the RMSE of the same orbit checkpoints in the image space is improved from 1 pixel to 0.7. It can be concluded that using the coarse-to-fine image matching method proposed in this paper to extract control points can significantly improve the on-orbit calibration accuracy of the footprint camera on the GF-7 satellite.


2016 ◽  
Vol 8 (1) ◽  
pp. 56 ◽  
Author(s):  
Tengfei Long ◽  
Weili Jiao ◽  
Guojin He ◽  
Zhaoming Zhang

Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document