scholarly journals Bone Regeneration Induced by Bone Porcine Block with Bone Marrow Stromal Stem Cells in a Minipig Model of Mandibular “Critical Size” Defect

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Antonio Scarano ◽  
Vito Crincoli ◽  
Adriana Di Benedetto ◽  
Valerio Cozzolino ◽  
Felice Lorusso ◽  
...  

Introduction. Adding stem cells to biodegradable scaffolds to enhance bone regeneration is a valuable option. Different kinds of stem cells with osteoblastic activity were tested, such as bone marrow stromal stem cells (BMSSCs). Aim. To assess a correct protocol for osteogenic stem cell differentiation, so BMSSCs were seeded on a bone porcine block (BPB). Materials and Methods. Bone marrow from six minipigs was extracted from tibiae and humeri and treated to isolate BMSSCs. After seeding on BPB, critical-size defects were created on each mandible of the minipigs and implanted with BPB and BPB/BMSSCs. After three months, histomorphometric analysis was performed. Results. Histomorphometric analysis provided percentages of the three groups. Tissues present in control defects were 23 ± 2% lamellar bone, 28 ± 1% woven bone, and 56 ± 4% marrow spaces; in BPB defects were 20 ± 5% BPB, 32 ± 2% lamellar bone, 24 ± 1% woven bone, and 28 ± 2% marrow spaces; in BPB/BMSSCs defects were 17 ± 4% BPB/BMSSCs, 42 ± 2% lamellar bone, 12 ± 1% woven bone, and 22 ± 3% marrow spaces. Conclusion. BPB used as a scaffold to induce bone regeneration may benefit from the addition of BDPSCs in the tissue-engineered constructs.

Gene Therapy ◽  
2003 ◽  
Vol 10 (24) ◽  
pp. 2013-2019 ◽  
Author(s):  
S C-N Chang ◽  
H L Chuang ◽  
Y R Chen ◽  
J K Chen ◽  
H-Y Chung ◽  
...  

2020 ◽  
Vol 6 (6) ◽  
pp. 1-8
Author(s):  
Dennis Smiler ◽  

Combining bone-marrow aspirate with xenograft and allograft particulate material has been demonstrated to produce a significant quantity of new bone growth. However, securing 1 to 4 ccs of adult autogenous stem cells by means of bone-marrow aspiration is invasive, and the aspirated stem cells are typically senescent, as the procedure most often is used in aging patients


2014 ◽  
Vol 20 (3) ◽  
pp. 239-251 ◽  
Author(s):  
Elena Veronesi ◽  
Alba Murgia ◽  
Anna Caselli ◽  
Giulia Grisendi ◽  
Maria Serena Piccinno ◽  
...  

Author(s):  
Basem M. Abdallah ◽  
Hany M. Khattab

: The isolation and culture of murine bone marrow-derived mesenchymal stromal stem cells (mBMSCs) have attracted great interest in terms of the pre-clinical applications of stem cells in tissue engineering and regenerative medicine. In addition, culturing mBMSCs is important for studying the molecular mechanisms of bone remodelling using relevant transgenic mice. Several factors have created challenges in the isolation and high-yield expansion of homogenous mBMSCs; these factors include low frequencies of bone marrow-derived mesenchymal stromal stem cells (BMSCs) in bone marrow, variation among inbred mouse strains, contamination with haematopoietic progenitor cells (HPCs), the replicative senescence phenotype and cellular heterogeneity. In this review, we provide an overview of nearly all protocols used for isolating and culturing mBMSCs with the aim of clarifying the most important guidelines for culturing highly purified mBMSC populations retaining in vitro and in vivo differentiation potential.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


Author(s):  
Mi Wu ◽  
Zhengyi Han ◽  
Wen Liu ◽  
Jinrong Yao ◽  
Bingjiao Zhao ◽  
...  

LAPONITE® (LAP) nanoplatelets were incorporated within a regenerated silk fibroin (RSF) microfibrous mat via electrospinning, which exhibited better cell adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) than the pristine RSF ones.


Sign in / Sign up

Export Citation Format

Share Document