scholarly journals Experimental Study on the Influence of Sulfate Reducing Bacteria on the Metallic Corrosion Behavior under Disbonded Coating

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Qingmiao Ding ◽  
Liping Fang ◽  
Yanyu Cui ◽  
Yujun Wang

A rectangle disbonded coating simulation device was used to research the effect of sulfate reducing bacteria (SRB) on the metallic corrosion behavior under disbonded coating by the electrochemical method. The results showed that the metal self-corrosion potential at the same test point had little change in the initial experiment stage, whether the solution was without or with SRB. The potential amplitude in the solution with SRB was larger than that without SRB in the later corrosion period. The corrosion current density of the metal at the same test point increased gradually over time in the solution with or without SRB, and SRB could accelerate the corrosion of the metal in the disbonded crevice. The metal self-corrosion potential in the crevice had little change in the SRB solution environment after adding the fungicide, but the corrosion current density decreased significantly. That meant the growth and reproduction of SRB were inhibited after adding the fungicide, so the metal corrosion rate slowed down. Among the three kinds of solution environment, increasing the coating disbonded thickness could accelerate the corrosion of the metal in the crevice, and it was the largest in the solution with SRB.

2010 ◽  
Vol 663-665 ◽  
pp. 473-476
Author(s):  
Shu Qi Zheng ◽  
Chang Feng Chen ◽  
Rui Jing Jiang ◽  
Dan Ni Wang

In the environment with H2S/CO2 or Na2S, the corrosion behavior of Lanthanum hexaboride (LaB6) was investigated by electrochemistry methods. The results indicated that the corrosion potential (Ecorr) and Rf of LaB6 increased as the partial pressure of H2S increased, while the corrosion current density (Icorr) decreased. In the environment containing Na2S, as the content of Na2S increased, the corrosion potential (Ecorr) and Rf of LaB6 decreased, while the corrosion current density (Icorr) increased. Thus, the addition of H2S into the environment with H2S/CO2 would inhibit the corrosion of LaB6; while in the environment containing Na2S, the increasing of the content of Na2S would accelerate the corrosion of LaB6.


2021 ◽  
Vol 1035 ◽  
pp. 624-629
Author(s):  
Xiao Jun Fang ◽  
Li Liu ◽  
Zhi Gang Yang ◽  
Yong Qiang Zhang

The sulfate reducing bacteria (SRB) bactericide was synthesized using KNO3, isothiazolinone, quaternary ammonium salt, and additives as main components, and the optimal ratio and critical concentration of the bactericide were determined. Weight loss method, potentiodynamic polarization curve, compatibility study were used to investigate the changes of corrosion rate and corrosion current density and compatibility after adding the bactericide. The results showed that the optimal formula ratio of the bactericide was: KNO3: isothiazolinone: quaternary ammonium salt: additive is 20:1:2:3, and the critical concentration of the bactericide was 50 mg/L. The addition of bactericides reduced the corrosion rate of pipes by 67% to 88%, and the electrochemical corrosion current density of pipes was significantly reduced, indicating that the presence of bactericides under the given media conditions significantly slowed down the corrosion process of metals. The bactericide was used in conjunction with commonly used oilfield chemicals such as corrosion inhibitors, scale inhibitors, flocculants, without obvious changes in appearance, no reduction in efficacy. Therefore, it may be concluded that the bactericide has good compatibility.


2019 ◽  
Vol 66 (6) ◽  
pp. 704-718
Author(s):  
Qingmiao Ding ◽  
Zili Li ◽  
Tao Shen ◽  
Gan Cui

Purpose This paper aims to research the corrosion behavior of the metal under the disbonded coatings interfered with AC through electrochemical method. Design/methodology/approach The corrosion behavior of the metal under disbond coating interfered with alternate stray current (AC) was studied by electrochemical methods using the rectangular coating disbonded simulator. The obtained data from electrode potential test, electrochemical impedance spectroscopy (EIS) and polarization curves in simulated soil solution indicated that under the natural corrosion condition, the self-corrosion potential and the corrosion current density of the metal at different depths under disbond coating had obviously changed if there was AC interference. Findings The self-corrosion potential of the metal at the same depths under disbond coating shifted negatively with the rising of the AC voltage. Under the condition of cathode polarization, there was still obvious potential gradient with the extension of the deep peeling of the coating gap, and the corrosion current density of the test points was minimum, and the protection effect was best when the cathode protection potential was −1.0 V. When the metal was applied with over-protection, the corrosion rate of the metal increased as AC stray current flowing through it increased. Originality/value This paper used the rectangular aperture device to study the corrosion behavior of X80 steel under the disbonded coatings through electrochemical methods when the AC stray current interference voltage was 0V, 1V, 5V or 10V and the protection potential was 0V, −0.9V, −1.0V, −1.2V or −1.3V, respectively. There is great significance to the safe operation and long-term service of pipeline steel in soil environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qing-Miao Ding ◽  
Yong-Xiang Qin ◽  
Tao Shen ◽  
Yu-ning Gao

In this paper, the effect of alternating stray current (AC) density on the corrosion behavior of X80 steel under disbonded coating was studied by electrochemical methods, wire beam electrode (WBE) technology, and surface observation technology. The results showed that under the interference of different AC densities, the corrosion potential of X80 steel under disbonded coating underwent negative deviation, and the degree of negative deviation increased with the increase of AC density. The corrosion current density of X80 steel under disbonded coating with the action of 0~100 A/m2 AC density had few differences. While the corrosion current density of X80 steel with the action of 200~300 A/m2 AC density increased and the corrosion current density was higher than that under low AC density. The cathode area of the wire beam electrode under disbonded coating is mainly distributed outside and the edge of the gap between disbonded coating and X80 steel, while the anode area is mainly distributed inside the gap.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 117 ◽  
Author(s):  
Guoqiang Ma ◽  
Qiongyao He ◽  
Xuan Luo ◽  
Guilin Wu ◽  
Qiang Chen

The effect of recrystallization annealing on corrosion behavior of Ta-4%W alloy was studied. It is found that the deformed sample contains high dense dislocations and dislocation boundaries. During annealing, these dislocations and dislocation boundaries are replaced by recrystallizing grains until the alloy is fully recrystallized. Both the anodic dissolution and the cathodic activity is much more blocked. The corrosion potential gradual shift towards negative values and corrosion current density decrease, while polarization resistance increases after annealing, indicating enhanced corrosion resistance of the alloy. Such an enhancement is caused by the increase of low-Σ coincide site lattice boundaries and decrease of dislocations and dislocation boundaries.


2020 ◽  
Vol 9 (1) ◽  
pp. 496-502 ◽  
Author(s):  
Zhaohui Zhang ◽  
Bailong Liu ◽  
Mei Wu ◽  
Longxin Sun

AbstractThe electrochemical behavior of gold dissolution in the Cu2+–NH3–S2O32−–EDTA solution has been investigated in detail by deriving and analyzing the Tafel polarization curve, as this method is currently widely implemented for the electrode corrosion analysis. The dissolution rate of gold in Cu2+–NH3–S2O32−–EDTA solution was determined based on the Tafel polarization curves, and the effects of various compound compositions in a Cu2+–NH3–S2O32−–EDTA mixture on the corrosion potential and corrosion current density were analyzed. The results showed that the corrosion potential and polarization resistance decreased, whereas the corrosion current density increased for certain concentrations of S2O32−–NH3–Cu2+ and EDTA, indicating that the dissolution rate of gold had changed. The reason for promoting the dissolution of gold is also discussed.


2011 ◽  
Vol 337 ◽  
pp. 281-284
Author(s):  
Dong Sheng Chen ◽  
Yong Zhang Zhou ◽  
Min Liu ◽  
Kai Wei Guo ◽  
Wu Ji Wei

The corrosion behavior of Q235 steel by Iron Bacteria (IB), Sulfate-reducing Bacteria (SRB) and Total General Bacteria (TGB) in sedimentary water of storage tank from an aromatics plant was investigated mainly by static hanging piece method, potentiodynamic polarization curve and hysteresis loop method. The results showed that the interaction of IB, SRB and TGB accelerated the corrosion rate of Q235 steel. The corrosion current density of Q235 steel electrode in IB, SRB and TGB solution was higher than that in the sterile solution, and the corrosion potential shifted in negative direction. IB, SRB and TGB reduced the corrosion resistance of Q235 steel. The corrosion of Q235 steel in the mixture of IB, SRB and TGB was more serious than in a single microbial system. The presence of IB, SRB and TGB made the pitting occur easily.


2013 ◽  
Vol 756-759 ◽  
pp. 85-88
Author(s):  
Xiao Ming Wang ◽  
Sheng Zhu ◽  
Qing Chang ◽  
Guo Feng Han

Al-based coating on ZM5 magnesium alloy was prepared by Supersonic Particles Deposition (SPD). Electrochemical working station was utilized to test polarization curve, corrosion potential and electrochemical impedance spectroscopy etc. The results indicted that corrosion potential of Al-Si coating was about-767.6mV, much higher than that of ZM5 Mg-substrate; And corrosion current density of the coating sample decreased three order of magnitude than that of the uncoated. Compared to Mg-substrate, the radius of capacitive impedance arc of the coating enlarged and impedance modulus improved two order of magnitude.


2011 ◽  
Vol 243-249 ◽  
pp. 5562-5566
Author(s):  
Jin Liang Lu ◽  
Jun Xi Zhang ◽  
Jun Jiang ◽  
Kun Wang ◽  
Wen Jun Qu

In this paper, the feasibility of inhibitor auxiliary re-alkalization was investigated. The effect of realkalization auxiliary inhibitor repair technique was studied by simulative experiment. It studied the changes of electrochemical parameters of the natural carbonated reinforced concrete during the electrochemical realkalization in 1mol/L Na2CO3 solution and the mixed solution of 1mol/L Na2CO3 and 1 mol/L DMEA , as well as the impedance spectroscopy and polarization curves in the process of relaxation. The results showed that: there appears to be no effect of DMEA on the corrosion potential and the impedance of the steel in the process of realkalization. That was, the performance was the same as that in the sodium carbonate solution except corrosion current of rebar with DMEA which showed much lower. But of the samples which the DMEA existed in the electrolyte was significantly shorter at the same relaxation time after realkalization. At the same relaxation time the corrosion potential was more positive and the corrosion current density was smaller. It improved significantly the effect of realkalization.


2019 ◽  
Vol 26 (3) ◽  
pp. 219-225
Author(s):  
Robert Starosta

Abstract Due to the paramagnetic properties and the ability to passivation, for the production of hulls of some vessels (mainly warships), corrosion-resistant (stainless) steels with austenitic structure are used. This article describes the influence of seawater salinity on selected corrosion properties of high-alloy steel X5CrNi 18-10 (304). The average salinity of the seas is taken as 3.5% content of sodium chloride. Corrosion rate of the tested material was evaluated in an aqueous solution of sodium chloride was evaluated. The NaCl concentration in corrosive solutions was 0.7%, 1.4%, 2.1%, 2.8%, 3.5%, 4.2%. Corrosion tests were performed using the potentiodynamic method. The range of electrochemical potential changes was Ecorr ±150 mV. Corrosion rate was assessed on the basis of corrosion current density measurements. Corrosion potential values against the saturated calomel electrode were also determined. Based on the obtained measurement results and non-parametric significance tests carried out, a significant influence of seawater salinity on the value of corrosion current density and corrosion potential was found. The highest value of corrosion current density (jcorr), and thus the highest corrosion rate, was recorded for 3.5% NaCl solution. In the concentration range from 0.7 to 3.5% NaCl in solution, the corrosion rate of austenitic steel increases. A further increase in salinity of electrolyte results in the inhibition of corrosion rate of steel. There is almost a full negative, linear correlation between the proportion of sodium chloride in the corrosive solution and the value of corrosion potential. Along with the rise in the salinity of seawater, increase the electrochemical activity, and thus the corrosion susceptibility, thus the corrosion susceptibility, of the austenitic steel X5CrNi 18-10 was observed.


Sign in / Sign up

Export Citation Format

Share Document