scholarly journals The Phosphatase Inhibitor Calyculin-A Impairs Clot Retraction, Platelet Activation, and Thrombin Generation

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Renáta Hudák ◽  
János Vincze ◽  
László Csernoch ◽  
Ildikó Beke Debreceni ◽  
Tamás Oláh ◽  
...  

The aim of this study was to investigate the effect of the serine/threonine protein phosphatase inhibitor, calyculin-A (CLA), on clot formation and on the procoagulant activity of human platelets. Platelet-rich plasma (PRP) samples were preincubated with buffer or CLA and subsequently platelets were activated by the protease-activated receptor 1 (PAR-1) activator, thrombin receptor activating peptide (TRAP). Clot retraction was detected by observing clot morphology up to 1 hour, phosphatidylserine- (PS-) expression was studied by flow cytometry, and thrombin generation was measured by a fluorimetric assay. For the intracellular Ca2+assay, platelets were loaded with calcium-indicator dyes and the measurements were carried out using a ratiometric method with real-time confocal microscopy. CLA preincubation inhibited clot retraction, PS-expression, and thrombin formation. TRAP activation elicited Ca2+response and PS-expression in a subset of platelets. The activated PRP displayed significantly faster and enhanced thrombin generation compared to nonactivated samples. CLA pretreatment abrogated PS-exposure and clot retraction also in TRAP-activated samples. As a consequence of the inhibitory effect on calcium elevation and PS-expression, CLA significantly downregulated thrombin generation in PRP. Our results show that CLA pretreatment may be a useful tool to investigate platelet activation mechanisms that contribute to clot formation and thrombin generation.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1116-1116
Author(s):  
Olga Panes ◽  
Valeria Matus ◽  
César González ◽  
Claudia G Sáez ◽  
Jaime Pereira ◽  
...  

Abstract Abstract 1116 Platelets are intrinsic components of hemostatic and pathological clots, and are essential for clot retraction. However, their role and sequential involvement in clot stabilization and lysis are still poorly understood. Human platelets contain several components of the fibrinolytic system, including functional PAI-1, TAFI, uPA and α 2-antiplasmin. Moreover, platelets possess a rich transcriptome and synthesize several proteins, among them, PAI-1. Using a global, modified clot lysis time assay in platelet-rich plasma (CLT-PRP; Panes et al., Platelets 2012) we found that the CLT-PRP was significantly longer than that of CLT in platelet-free plasma (PFP), reflecting a down-regulation of the fibrinolytic process. However, the prolonged CLT in subjects receiving tranexamic acid was normalized earlier in PRP than in PPP, denoting some pro-fibrinolytic activity in clots formed in a platelet milieu. Aim: to study the presence, origin, association and functional role of components of the fibrinolytic system in human platelets. Also, we aim to getting insight into the dynamic balance and modulation of the fibrinolytic process by the interplay of pro- and anti-fibrinolytic platelet factors. Methods and Results: in washed, leukocyte-free human platelets we detected expression of LRP-1, uPAR, PAI-1 mRNAs, and synthesis of these proteins (metabolic radiolabeling). Neither uPA mRNA nor synthesis of uPA was evidenced. All of these proteins, including uPA were detected in membrane or cytosol fractions by western blotting (WB). LRP-1 and uPAR were present in the outer leaflet of platelet membranes, with increased uPAR labeling after platelet activation (confocal microscopy-immunofluorescence). Non-stimulated whole platelets exhibit a low basal uPA activity (specific chromogenic substrate) selectively inhibited by amiloride. uPA activity falls slightly immediately after VWF-Ristocetin (VWF-R) and TRAP stimulation, but recovers to basal levels after 15min. Biotinylated washed platelets were immunoprecipitated (IP) with α -uPAR MoAb at different times before and after activation with either TRAP or VWF-Ristocetin. Co-precipitations with LRP-1, PAI-1 and uPA were detected in WB only after platelet activation with TRAP for 5 min, denoting the formation of a tetrameric complex, likely involved in endocytosis and receptor recycling. Interestingly, 5min after TRAP stimulation, uPA was sharply reduced, disappearing at 15 min, either in membrane or cytosol fractions, suggesting degradation of the protein. Similar pattern of co-precipitations were observed when IP was done with α -LRP-1 MoAb. Co-precipitations were more prominent in purified platelet membrane than in cytosolic fractions. Conclusions: human platelets express LRP-1, uPAR and PAI-1 mRNAs, and synthesize these proteins. uPA activity is present in whole, purified, washed platelets, and the protein is likely bound to the external platelet membrane. Co-precipitation of all these fibrinolytic components presumably denotes the formation of a tetrameric complex with endocytic and recycling capacities, as demonstrated in other cell lineages. Sequential IP′s after platelet activation disclose the disappearance of uPA, but not of PAI-1, from the complex, probably explained by a degradation process. Taken together, these results suggest that platelets play a predominantly antifibrinolytic role during early stages of formation of platelet-rich clots. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 97 (03) ◽  
pp. 417-424 ◽  
Author(s):  
Sofia Ramström ◽  
Maria Bjerke ◽  
Tomas Lindahl ◽  
Karin Vretenbrant

SummaryThrombin is a pivotal enzyme formed in the coagulation cascade and an important and potent platelet activator. The two pro-tease-activated thrombin receptors on human platelets are denoted PARI and PAR4. The physiological relevance of PAR4 is still unclear, as both aggregation and secretion can be accomplished by PARI activation alone. In the present study we have investigated the role of PARs in platelet activation, blood coagulation, clot elasticity and fibrinolysis. Flow cytometry, free oscillation rheometry and thrombin generation measurements were used to analyze blood or platelet-rich plasma from healthy individuals. Maximum PARI activation with the peptide SFLLRN gave fewer fibrinogen-binding platelets with lower mean fluorescent intensity than maximum PAR4 activation with AYPGKF. Inhibition of any of the receptors prolonged clotting times. However, PARI is more important for fibrinolysis; inhibition of this receptor prolonged all the steps in the fibrinolytic process. Clot elasticity decreased significantly when the PAR4 receptor was inhibited. In the thrombin generation measurements, PAR4 inhibition delayed the thrombin generation start and peak, but did not affect the total amount of thrombin generated. PAR I inhibition had no significant impact on thrombin generation. We found that PAR4 is most likely activated by low concentrations of thrombin during the initial phase of thrombin generation and is of importance to the clotting time. Furthermore, we suggest that the PAR4 receptor may have a physiological role in the stabilisation of the coagulum.


2000 ◽  
Vol 84 (12) ◽  
pp. 1109-1112 ◽  
Author(s):  
Alejandra Scazziota ◽  
Jorge Rouvier ◽  
Claudio Gonzalez ◽  
Raul Altman

Summary Background. Sodium arachidonate was used in this study to determine its capacity to generate thrombin through platelet activation. Whether aspirin prevent this effect was also investigated. Methods and Results. Seventeen healthy volunteers without and after 160 mg/day aspirin intake for 3-5 days were studied. Lag-time and TG at basal condition and after platelet stimulation by sodium arachidonate (AA) were measured in normal non-aspirinated as well as “in vivo” aspirinated platelet rich plasma. (PRP). The lag-time was statistically significant shorter in non-aspirinated PRP activated with AA compared with non-activated PRP. This effect was inhibited by aspirin. In non-aspirinated PRP, there was an increase of TG at 4 and 6 min. incubation when platelets were activated with AA but the difference disappeared after 8 min. incubation, (84 ± 71; 148 ± 58 and 142 ± 92 nmol/L respectively) compared with non-aspirinated, non-activated platelets (16 ± 23; 55 ± 56 and 111 ± 76 nmol/L at 4, 6 and 8 min, p < 0.0001, p < 0.0001 and p = 0.292, respectively). The AUCo→22 min were 520.6 ± 545.5 in nonaspirinated, non-stimulated PRP and 808.9 ± 617, in non-aspirinated PRP activated with sodium arachidonate (p = 0.014). Aspirin administered in vivo produced a decrease of TG in PRP activated with AA. Conclusion. Platelet activated by AA trigged TG. This effect was inhibited by aspirin and could be an additional beneficial effect of aspirin in the prevention of thrombosis.


2009 ◽  
Vol 102 (09) ◽  
pp. 511-519 ◽  
Author(s):  
Irene Lopez-Vilchez ◽  
Maribel Diaz-Ricart ◽  
Fulgencio Navalon ◽  
Esther Gomez ◽  
Cristobal Gasto ◽  
...  

SummaryAlthough it is generally acknowledged that serotonin (5-HT) is a weak agonist for human platelets, recent information suggests an association between serotonergic mechanisms and cardiovascular risk. We investigated the action of 5-HT on adhesive, cohesive and procoagulant properties of human platelets. Impact of 5-HT on whole blood coagulation and thrombin generation was measured by modified thromboelastometry (TEM) and specific fluorogenic assays. We evaluated the effects of 5-HT on thrombus formation in an in-vitro model of thrombosis using human flowing blood. In platelet-rich plasma (PRP), 5-HT favoured the expression of CD62-P, and procoagulant molecules on platelet membranes. These effects were potentiated in the presence of Ca++ and/or ADP. Incubation with 5-HT accelerated clotting times and augmented clot strength in whole blood TEM, and enhanced thrombin generation in PRP. In perfusion studies, 5-HT significantly increased fibrin deposition at low shear (300s-1) and enhanced platelet thrombus formation on the damaged vascular surface at high shear (1,200s-1). Selective inhibition of serotonin reuptake (SSRI) attenuated effects of 5-HT on platelet activation and downregulated the prothrombotic tendencies observed in the previous experimental conditions. In general, reductions of thrombogenic patterns observed with SSRI were more evident under shear conditions (aggregation and perfusion systems) and less evident under steady conditions (TEM and thrombin generation assays). In conclusion, 5-HT is not a weak agonist for human platelets; instead it accentuates platelet activation, potentiates procoagulant responses on human blood and increases thrombogenesis on damaged vascular surfaces. The remarkable antithrombotic actions achieved through SSRI deserve further mechanistic and clinical investigations.


1977 ◽  
Vol 38 (02) ◽  
pp. 0420-0428 ◽  
Author(s):  
J. L Moake ◽  
P. L Cimo ◽  
K Widmer ◽  
D. M Peterson ◽  
J. R Gum

SummaryIn dilute suspensions of platelet-rich plasma (PRP) or gel-separated platelets (GSP), dibutyryl-cAMP (DBcAMP) and monobutyryl-cAMP inhibited platelet-mediated fibrin clot retraction in concentrations of 2–3 × 10–6M, with complete inhibition at 1–3 × 10–4M. Prostaglandin E1 (PGE1), which inhibited fibrin clot retraction in concentrations greater than 1.5–3 × 10–8M, was a more effective inhibitor than either PGE2 or PGF2α. In the presence of theophylline (10–4M), concentrations of DBcAMP, PGE1 PGE2 and PGF2α necessary to inhibit fibrin clot retraction were reduced 50-fold for DBcAMP and 2.5 to 20-fold for the prostaglandins. In dilute PRP or GSP, inhibition of fibrin clot retraction does not result from inhibition of thrombin-induced platelet aggregation. Thus, compounds which increase platelet cAMP levels result in the inhibition of platelet-mediated fibrin clot retraction, and this inhibitory effect may be mediated, at least in part, through suppression of platelet contractility. Cyclic GMP, dibutyryl-cGMP and carbamylcholine-Cl (which stimulates guanylate cyclase) did not influence fibrin clot retraction, and did not prevent inhibition of fibrin clot retraction by DBcAMP and PGE?. Colchicine, in concentrations known to disrupt platelet microtubules (2.5 × 10–6M to 2.5 x 10–3M), had little inhibitory effect on either fibrin clot retraction or platelet (3H)-serotonin release.


1984 ◽  
Vol 52 (03) ◽  
pp. 333-335 ◽  
Author(s):  
Vider M Steen ◽  
Holm Holmsen

SummaryThe inhibitory effect of cAMP-elevating agents on shape change and aggregation in human platelets was studied to improve the understanding of the sequential relationship between these two responses.Human platelet-rich plasma was preincubated for 2 min at 37° C with prostaglandin E1 or adenosine, agents known to elevate the intracellular level of cAMP. Their inhibitory effects on ADP-induced shape change and aggregation were determined both separately and simultaneously. The dose-inhibition patterns for shape change and aggregation were similar for both PGE1 and adenosine. There was no distinct difference between the inhibitory action of these two inhibitors.These observations suggest that elevation of the intracellular concentration of cAMP interferes with an early step in the stimulus-response coupling that is common for aggregation and shape change.


2019 ◽  
Vol 20 (21) ◽  
pp. 5430
Author(s):  
Ildikó Beke Debreceni ◽  
Gabriella Mezei ◽  
Péter Batár ◽  
Árpád Illés ◽  
János Kappelmayer

Tyrosine kinase inhibitors (TKI) such as the BCR-ABL inhibitor dasatinib and nilotinib are highly effective therapies for chronic myeloid leukemia (CML). However, several lines of evidence suggest that dasatinib can induce bleeding which may be due to impaired collagen-induced platelet adhesion, aggregation, and secretion. Sarcoma family kinases (SFK) play central role in the GPVI-induced signaling pathway. We aimed to investigate whether and how dasatinib can modulate SFK-mediated platelet procoagulant activity in a purified system and in dasatinib/nilotinib treated CML patients. In platelet rich plasmas of healthy volunteers, dasatinib dose-dependently reduced convulxin-induced phosphatidylserine exposure and attenuated thrombin formation. Similarly to these changes, integrin activation and clot retraction were also significantly inhibited by 100 nM dasatinib. Platelets isolated from dasatinib treated patients showed a significantly lower phosphatidylserine expression upon convulxin activation compared to premedication levels. In these samples, thrombin generation was significantly slower, and the quantity of formed thrombin was less compared to the trough sample. Western blot analyses showed decreased phosphorylation levels of the C-terminal tail and the activation loop of SFKs upon dasatinib administration. Taken together, these results suggest that dasatinib inhibits the formation of procoagulant platelets via the GPVI receptor by inhibiting phosphorylation of SFKs.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3045-3051
Author(s):  
M Schattner ◽  
M Lazzari ◽  
AS Trevani ◽  
E Malchiodi ◽  
AC Kempfer ◽  
...  

The present study shows that the ability of soluble immune complexes (IC), prepared with human IgG and rabbit IgG antibodies against human IgG, to trigger platelet activation was markedly higher for IC prepared with cationized human IgG (catIC) compared with those prepared with untreated human IgG (cIC). CatIC induced platelet aggregation and adenosine triphosphate release in washed platelets (WP), gel-filtered platelets (GFP), or platelet-rich plasma (PRP) at physiologic concentrations of platelets (3 x 10(8)/mL) and at low concentrations of catIC (1 to 30 micrograms/mL). On the contrary, under similar experimental conditions, cIC did not induce aggregation in PRP, WP, or GFP. Low aggregation responses were only observed using high concentrations of both WP (9 x 10(8)/mL) and cIC (500 micrograms/mL). Interestingly, catIC were also able to induce platelet activation under nonaggregating conditions, as evidenced by P-selectin expression. Cationized human IgG alone did not induce platelet aggregation in PRP but triggered either WP or GFP aggregation. However, the concentration needed to induce these responses, was about eightfold higher than those required for catIC. The responses induced either by catIC or cationized human IgG were completely inhibited by treatment with heparin, dextran sulphate, EDTA, prostaglandin E1, or IV3, a monoclonal antibody against the receptor II for the Fc portion of IgG (Fc gamma RII). The data presented in this study suggest that IgG charge constitutes a critical property that conditions the ability of IC to trigger platelet activation.


1981 ◽  
Author(s):  
E H Mürer ◽  
E Siojo ◽  
J L Daniel

The effects of fluoride, which is transported into platelets in order to induce secretion, are compared with known effects of thrombin, which acts via external sites. Thus, the changes related to transmission of signal through the platelet membrane will not be common to the two activators, only those changes which are subsequent to the internal triggering of platelet activation. Human platelets were prepared by collection in EDTA and washing in saline-EDTA or by gel filtration of citrated platelet-rich plasma. The two methods gave similar results. Platelets prelabeled in plasma with 32P and them separated were incubated at 37°C with 10 mM fluoride at pH 7.4, and samples removed at intervals. (1) The protein was precipitated with HC104, then solubilized by sonication with SDS buffer and the protein bands separated by acrylamide slab gel electrophoresis. The 20K and 47K bands showed 100 to 200% increase in label, with maximum at 8 min incubation (50% secretion) and a great increase seen already at 3 min incubation, where little secretion is observed. (2) Samples were extracted with chloroform-methanol, evaporated to dryness under N2, redissolved in chloroform and applied on thinlayer silica gels on aluminum plates. Two different systems for separating phosphatidic acid (PA) were used. No significant increase in 32P radioactivity was seen in PA the first 3 min. The label at 20 min was 3x that at 8 min. Thus the labeling related to contractile events, a late step in secretion, precedes the labeling of PA, suggesting that the major part of this labeling is not related to the initial phase of platelet activation.


Sign in / Sign up

Export Citation Format

Share Document