scholarly journals Platelet activation via PAR4 is involved in the initiation of thrombin generation and in clot elasticity development

2007 ◽  
Vol 97 (03) ◽  
pp. 417-424 ◽  
Author(s):  
Sofia Ramström ◽  
Maria Bjerke ◽  
Tomas Lindahl ◽  
Karin Vretenbrant

SummaryThrombin is a pivotal enzyme formed in the coagulation cascade and an important and potent platelet activator. The two pro-tease-activated thrombin receptors on human platelets are denoted PARI and PAR4. The physiological relevance of PAR4 is still unclear, as both aggregation and secretion can be accomplished by PARI activation alone. In the present study we have investigated the role of PARs in platelet activation, blood coagulation, clot elasticity and fibrinolysis. Flow cytometry, free oscillation rheometry and thrombin generation measurements were used to analyze blood or platelet-rich plasma from healthy individuals. Maximum PARI activation with the peptide SFLLRN gave fewer fibrinogen-binding platelets with lower mean fluorescent intensity than maximum PAR4 activation with AYPGKF. Inhibition of any of the receptors prolonged clotting times. However, PARI is more important for fibrinolysis; inhibition of this receptor prolonged all the steps in the fibrinolytic process. Clot elasticity decreased significantly when the PAR4 receptor was inhibited. In the thrombin generation measurements, PAR4 inhibition delayed the thrombin generation start and peak, but did not affect the total amount of thrombin generated. PAR I inhibition had no significant impact on thrombin generation. We found that PAR4 is most likely activated by low concentrations of thrombin during the initial phase of thrombin generation and is of importance to the clotting time. Furthermore, we suggest that the PAR4 receptor may have a physiological role in the stabilisation of the coagulum.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Renáta Hudák ◽  
János Vincze ◽  
László Csernoch ◽  
Ildikó Beke Debreceni ◽  
Tamás Oláh ◽  
...  

The aim of this study was to investigate the effect of the serine/threonine protein phosphatase inhibitor, calyculin-A (CLA), on clot formation and on the procoagulant activity of human platelets. Platelet-rich plasma (PRP) samples were preincubated with buffer or CLA and subsequently platelets were activated by the protease-activated receptor 1 (PAR-1) activator, thrombin receptor activating peptide (TRAP). Clot retraction was detected by observing clot morphology up to 1 hour, phosphatidylserine- (PS-) expression was studied by flow cytometry, and thrombin generation was measured by a fluorimetric assay. For the intracellular Ca2+assay, platelets were loaded with calcium-indicator dyes and the measurements were carried out using a ratiometric method with real-time confocal microscopy. CLA preincubation inhibited clot retraction, PS-expression, and thrombin formation. TRAP activation elicited Ca2+response and PS-expression in a subset of platelets. The activated PRP displayed significantly faster and enhanced thrombin generation compared to nonactivated samples. CLA pretreatment abrogated PS-exposure and clot retraction also in TRAP-activated samples. As a consequence of the inhibitory effect on calcium elevation and PS-expression, CLA significantly downregulated thrombin generation in PRP. Our results show that CLA pretreatment may be a useful tool to investigate platelet activation mechanisms that contribute to clot formation and thrombin generation.


1992 ◽  
Vol 68 (02) ◽  
pp. 221-225 ◽  
Author(s):  
Tomas L Lindahl ◽  
Roger Festin ◽  
Anders Larsson

SummaryPlatelet function is dependent upon membrane receptors and their interaction with other proteins. Platelet activation appears to cause a structural change of the glycoprotein IIb/IIIa complex that exposes the fibrinogen binding site, which subsequently binds fibrinogen. Fluorescence-activated flow cytometry (FACS) is an efficient method for studying membrane proteins. Flow cytometry gives single-cell data, allowing the detection of only a small proportion of labelled platelets in whole blood without any washing steps. One problem with this method is that the labelled antibodies and the antigen, if present in plasma, form an immune complex, which may cause false positive reactions due to interaction between mammalian IgG and Fcγ receptors on the platelets.We show that immune complexes with chicken IgG do not activate human platelets. We have developed a method for measuring platelet-bound fibrinogen in whole blood and platelet-rich plasma utilising fluorescein isothiocyanate (FITC)-conjugated chicken antibodies directed towards human fibrinogen. As low as 1% activated platelets could be detected without interference from Fc-interactions.


2009 ◽  
Vol 102 (09) ◽  
pp. 511-519 ◽  
Author(s):  
Irene Lopez-Vilchez ◽  
Maribel Diaz-Ricart ◽  
Fulgencio Navalon ◽  
Esther Gomez ◽  
Cristobal Gasto ◽  
...  

SummaryAlthough it is generally acknowledged that serotonin (5-HT) is a weak agonist for human platelets, recent information suggests an association between serotonergic mechanisms and cardiovascular risk. We investigated the action of 5-HT on adhesive, cohesive and procoagulant properties of human platelets. Impact of 5-HT on whole blood coagulation and thrombin generation was measured by modified thromboelastometry (TEM) and specific fluorogenic assays. We evaluated the effects of 5-HT on thrombus formation in an in-vitro model of thrombosis using human flowing blood. In platelet-rich plasma (PRP), 5-HT favoured the expression of CD62-P, and procoagulant molecules on platelet membranes. These effects were potentiated in the presence of Ca++ and/or ADP. Incubation with 5-HT accelerated clotting times and augmented clot strength in whole blood TEM, and enhanced thrombin generation in PRP. In perfusion studies, 5-HT significantly increased fibrin deposition at low shear (300s-1) and enhanced platelet thrombus formation on the damaged vascular surface at high shear (1,200s-1). Selective inhibition of serotonin reuptake (SSRI) attenuated effects of 5-HT on platelet activation and downregulated the prothrombotic tendencies observed in the previous experimental conditions. In general, reductions of thrombogenic patterns observed with SSRI were more evident under shear conditions (aggregation and perfusion systems) and less evident under steady conditions (TEM and thrombin generation assays). In conclusion, 5-HT is not a weak agonist for human platelets; instead it accentuates platelet activation, potentiates procoagulant responses on human blood and increases thrombogenesis on damaged vascular surfaces. The remarkable antithrombotic actions achieved through SSRI deserve further mechanistic and clinical investigations.


Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3045-3051
Author(s):  
M Schattner ◽  
M Lazzari ◽  
AS Trevani ◽  
E Malchiodi ◽  
AC Kempfer ◽  
...  

The present study shows that the ability of soluble immune complexes (IC), prepared with human IgG and rabbit IgG antibodies against human IgG, to trigger platelet activation was markedly higher for IC prepared with cationized human IgG (catIC) compared with those prepared with untreated human IgG (cIC). CatIC induced platelet aggregation and adenosine triphosphate release in washed platelets (WP), gel-filtered platelets (GFP), or platelet-rich plasma (PRP) at physiologic concentrations of platelets (3 x 10(8)/mL) and at low concentrations of catIC (1 to 30 micrograms/mL). On the contrary, under similar experimental conditions, cIC did not induce aggregation in PRP, WP, or GFP. Low aggregation responses were only observed using high concentrations of both WP (9 x 10(8)/mL) and cIC (500 micrograms/mL). Interestingly, catIC were also able to induce platelet activation under nonaggregating conditions, as evidenced by P-selectin expression. Cationized human IgG alone did not induce platelet aggregation in PRP but triggered either WP or GFP aggregation. However, the concentration needed to induce these responses, was about eightfold higher than those required for catIC. The responses induced either by catIC or cationized human IgG were completely inhibited by treatment with heparin, dextran sulphate, EDTA, prostaglandin E1, or IV3, a monoclonal antibody against the receptor II for the Fc portion of IgG (Fc gamma RII). The data presented in this study suggest that IgG charge constitutes a critical property that conditions the ability of IC to trigger platelet activation.


1981 ◽  
Author(s):  
E H Mürer ◽  
E Siojo ◽  
J L Daniel

The effects of fluoride, which is transported into platelets in order to induce secretion, are compared with known effects of thrombin, which acts via external sites. Thus, the changes related to transmission of signal through the platelet membrane will not be common to the two activators, only those changes which are subsequent to the internal triggering of platelet activation. Human platelets were prepared by collection in EDTA and washing in saline-EDTA or by gel filtration of citrated platelet-rich plasma. The two methods gave similar results. Platelets prelabeled in plasma with 32P and them separated were incubated at 37°C with 10 mM fluoride at pH 7.4, and samples removed at intervals. (1) The protein was precipitated with HC104, then solubilized by sonication with SDS buffer and the protein bands separated by acrylamide slab gel electrophoresis. The 20K and 47K bands showed 100 to 200% increase in label, with maximum at 8 min incubation (50% secretion) and a great increase seen already at 3 min incubation, where little secretion is observed. (2) Samples were extracted with chloroform-methanol, evaporated to dryness under N2, redissolved in chloroform and applied on thinlayer silica gels on aluminum plates. Two different systems for separating phosphatidic acid (PA) were used. No significant increase in 32P radioactivity was seen in PA the first 3 min. The label at 20 min was 3x that at 8 min. Thus the labeling related to contractile events, a late step in secretion, precedes the labeling of PA, suggesting that the major part of this labeling is not related to the initial phase of platelet activation.


Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 565-570 ◽  
Author(s):  
RW Colman ◽  
WR Figures ◽  
LM Scearce ◽  
AM Strimpler ◽  
FX Zhou ◽  
...  

Abstract The relative roles of platelet autacoids such as adenosine diphosphate (ADP), prostaglandin endoperoxides, and thromboxane A2 (TXA2) in collagen-induced platelet activation are not fully understood. We reexamined this relationship using the ADP affinity analogue, 5'-p- fluorosulfonylbenzoyl adenosine (FSBA), which covalently modifies a receptor for ADP on the platelet surface, thereby inhibiting ADP- induced platelet activation. Collagen-induced shape change, aggregation, and fibrinogen binding were each fully inhibited under conditions in which FSBA is covalently incorporated and could not be overcome by raising the collagen used to supramaximal concentrations. In contrast, TXA2 synthesis stimulated by collagen under conditions that produced maximum aggregation was only minimally inhibited by FSBA. Since covalent incorporation of FSBA has been previously shown to specifically inhibit ADP-induced activation of platelets, the present study supports the contention that ADP is required for collagen-induced platelet activation. Under similar conditions, indomethacin, an inhibitor of cyclooxygenase, inhibited collagen-induced shape change, indicating that endoperoxides and/or TXA2 also play a role in this response. Shape change induced by low concentrations (10 nmol/L) of the stable prostaglandin endoperoxide, azo-PGH2, was also inhibited by FSBA. These observations indicate a role for ADP in responses elicited by low concentrations of endoperoxides. However, at higher concentrations of azo-PGH2 (100 nmol/L), inhibition by FSBA could be overcome. Thus, the effect of collagen apparently has an absolute requirement for ADP for aggregation and fibrinogen binding and for both ADP and prostaglandins for shape change. Aggregation and fibrinogen binding induced by prostaglandin endoperoxides also required ADP as a mediator, but ADP is not absolutely required at high endoperoxide concentration to induce shape change.


1977 ◽  
Author(s):  
P.G. Barton

Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet rich plasma but had no effect on primary aggregation.Thrombin-induced aggregation of washed human platelets suspended in Tyrode’s buffer was inhibited after incubation of cells with 4.5 × 10-6M detergent. Development of prothrombin-converting activity and efflux of [14C]-serotonin, 45Ca2+ ions and labile endoperoxides were abolished concomitantly. Aggregation of washed platelets by collagen or sodium arachidonate and the attachment of cells to clean glass surfaces were also inhibited by the same concentration of Brij 58 that inhibited thrombin aggregation. This concentration of Brij 58 did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 10-4 M, lysed the cells liberating all of their serotonin, Ca2+ and lactate dehydrogenase. These results suggest that low concentrations of Brij 58 stabilize a membrane conformation against the action of platelet stimulatory agents while high concentrations produce membrane destabilization and cell lysis. The presence of albumin (BSA) in the suspending fluid increased by tenfold the concentrations of detergent required to “elicit these effects and this could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]-acetylated Brij 58.


1981 ◽  
Author(s):  
G Marguerie ◽  
M J Larrieu ◽  
E F Plow

Fibrinogen binds to specific receptors on washed human platelets and these sites are induced by ADP. This interaction is assumed to be the basis for the participation of the molecule in ADP-stimulated platelet aggregation, but fibrinogen binding to platelets in plasma has not been directly demonstrated. In this study, we have characterized the binding of 125 I-fibrinogen to platelets in the platelet rich plasma (PRP) of afibrinogene- mic patients. In either citrated or heparinized PRP, association of fibrinogen with platelets was demonstrable and was dependent on ADP dose. This binding was time dependent and reached equilibrium in 10 to 15 min. At 22°C, the rate constants of association were kon = 0.9×10-6 M-1 min-1 in plasma compared to kon = 0.6×l0-6M-1 min-1 in Tyrode’s buffer indicating that initial rate of reaction was similar in both milieu. The kinetics of binding in plasma were the same at 37°C and 22°C but fewer molecules were bound at the higher temperature. In the PRP, saturable binding of fibrinogen to the platelet was achieved at concentrations greater than 0.5 μM. A linear Scatchard plot was derived which indicated a single class of binding site with an affinity constant of Ka = 1.8×106 M-1 and 32,000 fibrinogen molecules were maximally bound per platelet. These values are essentially identical to those obtained with washed platelets. In buffer, platelet-bound fibrinogen becomes progressively nondissociab1e , and this stabilization occurred to a partial extent in plasma. In sum, these results establish that the previously defined steps in ADP-induced binding of fibrinogen to platelet occur in plasma.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1116-1116
Author(s):  
Olga Panes ◽  
Valeria Matus ◽  
César González ◽  
Claudia G Sáez ◽  
Jaime Pereira ◽  
...  

Abstract Abstract 1116 Platelets are intrinsic components of hemostatic and pathological clots, and are essential for clot retraction. However, their role and sequential involvement in clot stabilization and lysis are still poorly understood. Human platelets contain several components of the fibrinolytic system, including functional PAI-1, TAFI, uPA and α 2-antiplasmin. Moreover, platelets possess a rich transcriptome and synthesize several proteins, among them, PAI-1. Using a global, modified clot lysis time assay in platelet-rich plasma (CLT-PRP; Panes et al., Platelets 2012) we found that the CLT-PRP was significantly longer than that of CLT in platelet-free plasma (PFP), reflecting a down-regulation of the fibrinolytic process. However, the prolonged CLT in subjects receiving tranexamic acid was normalized earlier in PRP than in PPP, denoting some pro-fibrinolytic activity in clots formed in a platelet milieu. Aim: to study the presence, origin, association and functional role of components of the fibrinolytic system in human platelets. Also, we aim to getting insight into the dynamic balance and modulation of the fibrinolytic process by the interplay of pro- and anti-fibrinolytic platelet factors. Methods and Results: in washed, leukocyte-free human platelets we detected expression of LRP-1, uPAR, PAI-1 mRNAs, and synthesis of these proteins (metabolic radiolabeling). Neither uPA mRNA nor synthesis of uPA was evidenced. All of these proteins, including uPA were detected in membrane or cytosol fractions by western blotting (WB). LRP-1 and uPAR were present in the outer leaflet of platelet membranes, with increased uPAR labeling after platelet activation (confocal microscopy-immunofluorescence). Non-stimulated whole platelets exhibit a low basal uPA activity (specific chromogenic substrate) selectively inhibited by amiloride. uPA activity falls slightly immediately after VWF-Ristocetin (VWF-R) and TRAP stimulation, but recovers to basal levels after 15min. Biotinylated washed platelets were immunoprecipitated (IP) with α -uPAR MoAb at different times before and after activation with either TRAP or VWF-Ristocetin. Co-precipitations with LRP-1, PAI-1 and uPA were detected in WB only after platelet activation with TRAP for 5 min, denoting the formation of a tetrameric complex, likely involved in endocytosis and receptor recycling. Interestingly, 5min after TRAP stimulation, uPA was sharply reduced, disappearing at 15 min, either in membrane or cytosol fractions, suggesting degradation of the protein. Similar pattern of co-precipitations were observed when IP was done with α -LRP-1 MoAb. Co-precipitations were more prominent in purified platelet membrane than in cytosolic fractions. Conclusions: human platelets express LRP-1, uPAR and PAI-1 mRNAs, and synthesize these proteins. uPA activity is present in whole, purified, washed platelets, and the protein is likely bound to the external platelet membrane. Co-precipitation of all these fibrinolytic components presumably denotes the formation of a tetrameric complex with endocytic and recycling capacities, as demonstrated in other cell lineages. Sequential IP′s after platelet activation disclose the disappearance of uPA, but not of PAI-1, from the complex, probably explained by a degradation process. Taken together, these results suggest that platelets play a predominantly antifibrinolytic role during early stages of formation of platelet-rich clots. Disclosures: No relevant conflicts of interest to declare.


1989 ◽  
Vol 62 (03) ◽  
pp. 968-976 ◽  
Author(s):  
M A Packham ◽  
N L Bryant ◽  
M A Guccione ◽  
R L Kinlough-Rathbone ◽  
J F Mustard

SummaryThe effect of the concentration of Ca2+ in the suspending medium of human and rabbit platelets on aggregation, release of 14C-serotonin, and TXB2 formation in response to ADP, thrombin, l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (PAF), collagen and arachidonic acid was studied in either platelet-rich plasma anticoagulated with D-phenylalanyl-prolyl-arginyl chloromethylketone (PPACK) or citrate, or suspensions of washed platelets in modified Tyrode-albumin solutions containing 1 mM Mg2+ and concentrations of added Ca2+ ranging from 0 to 5 mM. In response to ADP, thrombin, or PAF, human platelets were stimulated to form TXA2 by close platelet contact in a low- Ca2+ medium; at physiological concentrations of Ca2+, TXB 2formation was much less and declined progressively as the concentration of Ca2+ was raised. When the formation of TXA 2was blocked with aspirin or indomethacin, aggregation and release by human platelets were strongest at physiological concentrations of Ca2+. Rabbit platelet responses differed markedly from those of human platelets because close contact of rabbit platelets in a low-Ca2+ medium did not promote TXA2 formation. Rabbit platelet responses were more strongly inhibited by the lack of added Ca2+ in the medium than the responses of human platelets, possibly because rabbit platelets do not contain releasable Ca2+.In all studies of human platelets in media with low concentrations of Ca2+, the additional contribution to platelet responses of TXA2 formed because of close platelet contact should be considered because TXA2 formation is not usually stimulated in this way at physiological concentrations of Ca2+. When TXA2 formation is blocked, aggregation and release responses to all agonists are greatest at physiological concentrations of Ca2+. Thus, the responses of human platelets in media with low concentrations of Ca2+ (citrated platelet-rich plasma or artificial media to which no Ca2+ has been added) are abnormal in at least two ways, and do not correspond to the responses at physiological concentrations of Ca2+.


Sign in / Sign up

Export Citation Format

Share Document