Circulating Human Platelets Express LRP-1 and uPAR mRNAs and Synthesize the Proteins: The Complex LRP-1, uPAR, PAI-1 and uPA Play a Role in Modulating Fibrinolysis in Platelet-Rich Thrombi

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1116-1116
Author(s):  
Olga Panes ◽  
Valeria Matus ◽  
César González ◽  
Claudia G Sáez ◽  
Jaime Pereira ◽  
...  

Abstract Abstract 1116 Platelets are intrinsic components of hemostatic and pathological clots, and are essential for clot retraction. However, their role and sequential involvement in clot stabilization and lysis are still poorly understood. Human platelets contain several components of the fibrinolytic system, including functional PAI-1, TAFI, uPA and α 2-antiplasmin. Moreover, platelets possess a rich transcriptome and synthesize several proteins, among them, PAI-1. Using a global, modified clot lysis time assay in platelet-rich plasma (CLT-PRP; Panes et al., Platelets 2012) we found that the CLT-PRP was significantly longer than that of CLT in platelet-free plasma (PFP), reflecting a down-regulation of the fibrinolytic process. However, the prolonged CLT in subjects receiving tranexamic acid was normalized earlier in PRP than in PPP, denoting some pro-fibrinolytic activity in clots formed in a platelet milieu. Aim: to study the presence, origin, association and functional role of components of the fibrinolytic system in human platelets. Also, we aim to getting insight into the dynamic balance and modulation of the fibrinolytic process by the interplay of pro- and anti-fibrinolytic platelet factors. Methods and Results: in washed, leukocyte-free human platelets we detected expression of LRP-1, uPAR, PAI-1 mRNAs, and synthesis of these proteins (metabolic radiolabeling). Neither uPA mRNA nor synthesis of uPA was evidenced. All of these proteins, including uPA were detected in membrane or cytosol fractions by western blotting (WB). LRP-1 and uPAR were present in the outer leaflet of platelet membranes, with increased uPAR labeling after platelet activation (confocal microscopy-immunofluorescence). Non-stimulated whole platelets exhibit a low basal uPA activity (specific chromogenic substrate) selectively inhibited by amiloride. uPA activity falls slightly immediately after VWF-Ristocetin (VWF-R) and TRAP stimulation, but recovers to basal levels after 15min. Biotinylated washed platelets were immunoprecipitated (IP) with α -uPAR MoAb at different times before and after activation with either TRAP or VWF-Ristocetin. Co-precipitations with LRP-1, PAI-1 and uPA were detected in WB only after platelet activation with TRAP for 5 min, denoting the formation of a tetrameric complex, likely involved in endocytosis and receptor recycling. Interestingly, 5min after TRAP stimulation, uPA was sharply reduced, disappearing at 15 min, either in membrane or cytosol fractions, suggesting degradation of the protein. Similar pattern of co-precipitations were observed when IP was done with α -LRP-1 MoAb. Co-precipitations were more prominent in purified platelet membrane than in cytosolic fractions. Conclusions: human platelets express LRP-1, uPAR and PAI-1 mRNAs, and synthesize these proteins. uPA activity is present in whole, purified, washed platelets, and the protein is likely bound to the external platelet membrane. Co-precipitation of all these fibrinolytic components presumably denotes the formation of a tetrameric complex with endocytic and recycling capacities, as demonstrated in other cell lineages. Sequential IP′s after platelet activation disclose the disappearance of uPA, but not of PAI-1, from the complex, probably explained by a degradation process. Taken together, these results suggest that platelets play a predominantly antifibrinolytic role during early stages of formation of platelet-rich clots. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3000-3000
Author(s):  
Olga Panes ◽  
Valeria Matus ◽  
Claudia G. Sáaez ◽  
Jaime Pereira ◽  
Diego Mezzano

Abstract Abstract 3000 Poster Board II-977 Human platelets synthesize and store functionally silent tissue factor (TF) which expresses procoagulant activity (PCA) after platelet activation. Fast activation of TF was elicited by VWF-Ristocetin (VWF-R) through GPIbαa activation and Src-Lyn transduction pathway (Blood, Nov 2008; 112:113). Given that GPVI, along with GPIb and TF have been found in “lipid rafts”, and the activated form of GPVI signals through Fyn, another member of the Src family, we tested if GPVI was involved in TF-initiated PCA. We also studied the time-course and pathway specificity of TF activation and the role of platelet FVII in PCA. Weak TF immunofluorescence and co-localization with GPIba were observed in non stimulated washed platelets. A mild increase of TF fluorescence was detected 2 min after TRAP activation, which augmented when the stimulus was VWF-R. Furthermore, striking enhancement of TF fluorescence occurred 2 min after depositing platelets over a VWF-coated surface, but not over fibrinogen or albumin. Platelets adherent to VWF matrix showed GPIb clustering and loss of co-localization with TF. Externalization of TF was confirmed by immunoprecipitation (Ip) of biotinylated membranes before and after platelet activation. Concomitantly, TF-dependent FXa generation increased 5-10-fold shortly after VWF stimulus. Washed platelets stimulated with VWF-R agglutinated normally when stirred in an aggregometer, and the fraction of platelets exposing anionic phospholipids (annexin V binding) was similar to parallel samples stimulated with TRAP. However, VWF-R induced null 14C-serotonin secretion and P-selectin exposure (flow cytometry) in washed platelets. In contrast, TRAP, collagen, ADP and convulxin induced full platelet aggregation, 14C-serotonin and P-selectin secretion at 2-5 min, but with no increase in FXa generation. Platelet PCA was inhibited by antibodies against TF, GPIba, FVIIa, as well as by SU6656 and PP2 (Src pathway inhibitors), but not by Gö6850 (a PKC inhibitor) or exogenous TFPI. p85, a subunit of PI-3K constitutively associated with GPIb complex, becomes strongly associated with TF after stimulation with VWF-R, though only weakly after TRAP activation, confirming the coordinate activation of GPIb and TF. FVII and FX were revealed in platelet membrane fractions by immunoblotting and both co-precipitate with TF in non-stimulated platelets. Two min after activation with VWF-R striking co-precipitations of TF with FVII and FX light chains were evidenced, denoting activation of platelet FVII and FX. When exogenous FX was added to the assay, the amount of FXa generated after 1 and 2 min stimulation was similar whether or not exogenous FVIIa was added. Platelets from four non-related patients with bleeding related to hereditary defect of GPVI had null aggregation and secretion with convulxin and collagen, less than 7% labeling of GPVI by flow cytometry and an immunoreactive membrane GPVI of Mr≈40kDa (native GPVI Mr=62kDa). All of them had normal agglutination with VWF-R and normal FXa generation. In summary, GPIb activation by VWF constitutes a unique and fast inducer of platelet TF-dependent PCA. This process requires anionic phospholipid exposure, but is independent of platelet GPIIb/IIIa and GPVI function. Platelet FVII can initiate FXa generation without need of plasma FVII. The associations of platelet FVII and FX with TF on membrane fractions, together with the large amount of FV in platelets, indicate that human platelets provide not just TF and a PCA phospholipid platform, but also all the components of the prothrombinase complex to trigger the clotting process. Taken together, our results underline the central role of platelets in the whole hemostatic process, unifying primary and secondary hemostasis and circumscribing thrombin generation and fibrin deposition where platelet plug is being formed. Platelet PCA should become a pharmacological target for preventing or managing bleeding and thrombotic disorders. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Renáta Hudák ◽  
János Vincze ◽  
László Csernoch ◽  
Ildikó Beke Debreceni ◽  
Tamás Oláh ◽  
...  

The aim of this study was to investigate the effect of the serine/threonine protein phosphatase inhibitor, calyculin-A (CLA), on clot formation and on the procoagulant activity of human platelets. Platelet-rich plasma (PRP) samples were preincubated with buffer or CLA and subsequently platelets were activated by the protease-activated receptor 1 (PAR-1) activator, thrombin receptor activating peptide (TRAP). Clot retraction was detected by observing clot morphology up to 1 hour, phosphatidylserine- (PS-) expression was studied by flow cytometry, and thrombin generation was measured by a fluorimetric assay. For the intracellular Ca2+assay, platelets were loaded with calcium-indicator dyes and the measurements were carried out using a ratiometric method with real-time confocal microscopy. CLA preincubation inhibited clot retraction, PS-expression, and thrombin formation. TRAP activation elicited Ca2+response and PS-expression in a subset of platelets. The activated PRP displayed significantly faster and enhanced thrombin generation compared to nonactivated samples. CLA pretreatment abrogated PS-exposure and clot retraction also in TRAP-activated samples. As a consequence of the inhibitory effect on calcium elevation and PS-expression, CLA significantly downregulated thrombin generation in PRP. Our results show that CLA pretreatment may be a useful tool to investigate platelet activation mechanisms that contribute to clot formation and thrombin generation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3715-3715
Author(s):  
Yanyan Xu ◽  
Xue Chen ◽  
Junling Liu

Abstract Mammalian stress-activated protein kinase interacting protein 1 (SIN1) is an essential subunit of the mTORC2 complex, which regulates Akt activation by phosphorylation of Akt at Ser473 residue. Despite the function of Akt in platelet activation and thrombosis was well studied, the role of SIN1 in platelet activation and thrombosis remains unknown. In this study, we observed that megakaryocyte/platelet specific SIN1 deficiency caused 30% reduction of platelet counts in peripheral blood probably by blockage of megakaryocyte differentiation and enhancing platelet apoptosis, suggesting that SIN1 had an important role in thrombopoiesis. More importantly, SIN1 deficiency caused a defect in platelet aggregation in response to low level of thrombin, U46619, ADP and collagen. SIN1 deficiency also exhibited diminished ability of platelet to spread on immobilized fibrinogen and the decreased rate of clot retraction in platelet-rich plasma containing SIN1 deficient platelets. mTORC2 complex analysis revealed that the expression levels of Rictor, another mTORC2 component, were significantly diminished in SIN1 deficient platelet. And SIN1 deficiency attenuated agonist-induced phosphorylation of Akt at Ser473, Thr308 and Thr450, and Gsk3β at Ser9 in platelet. SIN1 could be phosphorylated at Thr86, which correlated with the phosphorylation of Akt at Ser473 in activated platelets. Further study demonstrated that the phosphorylation levels of SIN1 at Thr86 and Akt at Ser473 and Thr450, but not at Thr308 were enhanced in the platelets collected from ST-segment elevation myocardial infarction (STEMI) patients, indicating that SIN1 activation correlated with myocardial infarction process. A mouse model of chronic myocardial infarction (MI) was performed and the results demonstrated that platelet-specific SIN1 deficient mice had less platelet activation, reduced MI size, and improved post-MI heart function. In conclusion, SIN1 plays critical roles in platelet activation, MI and post-MI heart failure, therefore serves as a target for therapeutic intervention in the thrombosis and myocardial infarction. Disclosures No relevant conflicts of interest to declare.


1999 ◽  
Vol 81 (04) ◽  
pp. 601-604 ◽  
Author(s):  
Hiroyuki Matsuno ◽  
Osamu Kozawa ◽  
Masayuki Niwa ◽  
Shigeru Ueshima ◽  
Osamu Matsuo ◽  
...  

SummaryThe role of fibrinolytic system components in thrombus formation and removal in vivo was investigated in groups of six mice deficient in urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA), or plasminogen activator inhibitor-1 (PAI-1) (u-PA-/-, t-PA-/- or PAI-1-/-, respectively) or of their wild type controls (u-PA+/+, t-PA+/+ or PAI-1+/+). Thrombus was induced in the murine carotid artery by endothelial injury using the photochemical reaction between rose bengal and green light (540 nm). Blood flow was continuously monitored for 90 min on day 0 and for 20 min on days 1, 2 and 3. The times to occlusion after the initiation of endothelial injury in u-PA+/+, t-PA+/+ or PAI-1+/+ mice were 9.4 ± 1.3, 9.8 ± 1.1 or 9.7 ± 1.6 min, respectively. u-PA-/- and t-PA-/- mice were indistinguishable from controls, whereas that of PAI-1-/- mice were significantly prolonged (18.4 ± 3.7 min). Occlusion persisted for the initial 90 min observation period in 10 of 18 wild type mice and was followed by cyclic reflow and reocclusion in the remaining 8 mice. At day 1, persistent occlusion was observed in 1 wild type mouse, 8 mice had cyclic reflow and reocclusion and 9 mice had persistent reflow. At day 2, all injured arteries had persistent reflow. Persistent occlusion for 90 min on day 0 was observed in 3 u-PA-/-, in all t-PA-/- mice at day 1 and in 2 of the t-PA-/-mice at day 2 (p <0.01 versus wild type mice). Persistent patency was observed in all PAI-1-/- mice at day 1 and in 5 of the 6 u-PA-/- mice at day 2 (both p <0.05 versus wild type mice). In conclusion, t-PA increases the rate of clot lysis after endothelial injury, PAI-1 reduces the time to occlusion and delays clot lysis, whereas u-PA has little effect on thrombus formation and spontaneous lysis.


1994 ◽  
Vol 71 (03) ◽  
pp. 347-352 ◽  
Author(s):  
Jean-Pierre Loza ◽  
Victor Gurewich ◽  
Michael Johnstone ◽  
Ralph Pannell

SummaryClots formed from platelet rich plasma were found to be lysed more readily by low concentrations of pro-urokinase (pro-UK) than clots formed from platelet poor plasma. This was not a non-specific effect since the reverse occurred with tissue plasminogen activator. A mechanical explanation due to platelet-mediated clot retraction was excluded by experiments in which retraction was inhibited with cyto-chalasin B. Therefore, a platelet-mediated enzymatic mechanism was postulated to explain the promotion of fibrinolysis. Casein autography of isolated platelets revealed a ≈ 90 kDa band of activity which comigrated with plasma prekallikrein (PK)/kallikrein, a known activator of pro-UK. Furthermore, treatment of platelets with plasma PK activator (PPA), consisting essentially of factor XIIa, induced activation of pro-UK and of chromomgenic substrate for kallikrein (S-2302). This activity corresponded to approximately 40-200 pM kallikrein per 10 8 washed and gel filtered platelets per ml. The activation of pro-UK by PPA-pretreated platelets was dose-dependent and inhibited by soybean trypsin inhibitor but not by bdellin, a specific inhibitor of plasmin, nor by the corn inhibitor of factor XIIa. Kinetic analysis of pro-UK activation by kallikrein showed promotion of the reaction by platelets. The KM of the reaction was reduced by platelets by ≈ 7-fold, while the kcat was essentially unchanged. In conclusion, PK was shown to be tightly associated with platelets where it can be activated by factor XIIa during clotting. The activation of pro-UK by platelet-bound kallikrein provides an explanation for the observed platelet mediated promotion of pro-UK-induced clot lysis. Since pro-UK and plasminogen have also been shown to be associated with platelets, the present findings suggest a mechanism by which the factor Xlla-dependent intrinsic pathway of fibrinolysis can be localized and targeted to a thrombus.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3045-3051
Author(s):  
M Schattner ◽  
M Lazzari ◽  
AS Trevani ◽  
E Malchiodi ◽  
AC Kempfer ◽  
...  

The present study shows that the ability of soluble immune complexes (IC), prepared with human IgG and rabbit IgG antibodies against human IgG, to trigger platelet activation was markedly higher for IC prepared with cationized human IgG (catIC) compared with those prepared with untreated human IgG (cIC). CatIC induced platelet aggregation and adenosine triphosphate release in washed platelets (WP), gel-filtered platelets (GFP), or platelet-rich plasma (PRP) at physiologic concentrations of platelets (3 x 10(8)/mL) and at low concentrations of catIC (1 to 30 micrograms/mL). On the contrary, under similar experimental conditions, cIC did not induce aggregation in PRP, WP, or GFP. Low aggregation responses were only observed using high concentrations of both WP (9 x 10(8)/mL) and cIC (500 micrograms/mL). Interestingly, catIC were also able to induce platelet activation under nonaggregating conditions, as evidenced by P-selectin expression. Cationized human IgG alone did not induce platelet aggregation in PRP but triggered either WP or GFP aggregation. However, the concentration needed to induce these responses, was about eightfold higher than those required for catIC. The responses induced either by catIC or cationized human IgG were completely inhibited by treatment with heparin, dextran sulphate, EDTA, prostaglandin E1, or IV3, a monoclonal antibody against the receptor II for the Fc portion of IgG (Fc gamma RII). The data presented in this study suggest that IgG charge constitutes a critical property that conditions the ability of IC to trigger platelet activation.


1981 ◽  
Author(s):  
E H Mürer ◽  
E Siojo ◽  
J L Daniel

The effects of fluoride, which is transported into platelets in order to induce secretion, are compared with known effects of thrombin, which acts via external sites. Thus, the changes related to transmission of signal through the platelet membrane will not be common to the two activators, only those changes which are subsequent to the internal triggering of platelet activation. Human platelets were prepared by collection in EDTA and washing in saline-EDTA or by gel filtration of citrated platelet-rich plasma. The two methods gave similar results. Platelets prelabeled in plasma with 32P and them separated were incubated at 37°C with 10 mM fluoride at pH 7.4, and samples removed at intervals. (1) The protein was precipitated with HC104, then solubilized by sonication with SDS buffer and the protein bands separated by acrylamide slab gel electrophoresis. The 20K and 47K bands showed 100 to 200% increase in label, with maximum at 8 min incubation (50% secretion) and a great increase seen already at 3 min incubation, where little secretion is observed. (2) Samples were extracted with chloroform-methanol, evaporated to dryness under N2, redissolved in chloroform and applied on thinlayer silica gels on aluminum plates. Two different systems for separating phosphatidic acid (PA) were used. No significant increase in 32P radioactivity was seen in PA the first 3 min. The label at 20 min was 3x that at 8 min. Thus the labeling related to contractile events, a late step in secretion, precedes the labeling of PA, suggesting that the major part of this labeling is not related to the initial phase of platelet activation.


Blood ◽  
1981 ◽  
Vol 57 (1) ◽  
pp. 44-48 ◽  
Author(s):  
RC Carroll ◽  
JM Gerrard ◽  
JM Gilliam

Abstract Platelet facilitation of clot lysis was studied using the dilute clot lysis assay, a standardized assay for fibrinolysis shown to correlate with the development of postoperative deep vein thrombosis. Clots prepared from dilute platelet poor plasma showed prolonged clot lysis when compared with clots prepared in a similar fashion from dilute platelet rich plasma. Since in the presence of platelets clot retraction or contraction occurred, we evaluated a possible direct contribution of retraction to clot lysis. Dilute platelet poor plasma clots were compacted by centrifugation, to a similar extent as that achieved during clot retraction in dilute platelet rich plasma. These clots now lysed at a rate that approached that seen with dilute platelet rich plasma clots. Using an alternate alternate approach, dilute platelet rich plasma clots were treated with cytochalasin B to prevent clot retraction. Such clots now showed prolonged lysis similar to that seen with dilute platelet poor plasma. The prolonged lysis of cytochalasin B treated dilute platelet rich plasma clots was corrected by artificial compaction of the clots. The results suggest that clot retraction markedly facilitates clot lysis, and shows that a major role of platelets to facilitate clot lysis is the effect of these cells to cause clot retraction.


Blood ◽  
2020 ◽  
Author(s):  
Claire S Whyte ◽  
Gael B Morrow ◽  
Nagyung Baik ◽  
Nuala A Booth ◽  
Mohammed M Jalal ◽  
...  

Plasminogen activation rates are enhanced by cell surface binding. We have previously demonstrated that exogenous plasminogen binds to phosphatidylserine-exposing and spread platelets. Platelets contain plasminogen in their α-granules but secretion of plasminogen from platelets has not been studied. Recently, a novel transmembrane lysine-dependent plasminogen receptor, Plg-RKT, has been described on macrophages. Here, we analyzed the pool of plasminogen in platelets and examined whether platelets express Plg-RKT. Plasminogen content of the supernatant of resting and collagen/thrombin-stimulated platelets was similar. Pre-treatment with the lysine analogue, εACA, significantly increased platelet-derived plasminogen (0.33 nmol/108 plts vs. 0.08 nmol/108 plts) in the stimulated supernatant, indicating a lysine-dependent mechanism of membrane retention. Lysine-dependent, platelet-derived plasminogen retention on thrombin and convulxin activated human platelets was confirmed by flow cytometry. Platelets initiated fibrinolytic activity in fluorescently labelled plasminogen-deficient clots and in turbidimetric clot lysis assays. A 17 kDa band, consistent with Plg-RKT, was detected in the platelet membrane fraction by Western blotting. Confocal microscopy of stimulated platelets revealed Plg-RKT co-localized with platelet-derived plasminogen on the activated platelet membrane. Plasminogen exposure was significantly attenuated in thrombin and convulxin stimulated platelets from Plg-RKT-/- mice compared to Plg-RKT+/+ littermates. Membrane exposure of Plg-RKT was not dependent on plasminogen, as similar levels of the receptor were detected in plasminogen-/- platelets. These data highlight Plg-RKT as a novel plasminogen receptor in human and murine platelets. We show for the first time that platelet-derived plasminogen is retained on the activated platelet membrane and drives local fibrinolysis, by enhancing cell-surface mediated plasminogen activation.


Sign in / Sign up

Export Citation Format

Share Document