scholarly journals Mechanical Properties and Durability of Latex-Modified Fiber-Reinforced Concrete: A Tunnel Liner Application

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Joo-Ha Lee ◽  
Hwang-Hee Kim ◽  
Sung-Ki Park ◽  
Ri-On Oh ◽  
Hae-Do Kim ◽  
...  

This study assessed the mechanical properties and durability of latex-modified fiber-reinforced segment concrete (polyolefin-based macrosynthetic fibers and hybrid fiber-macrosynthetic fiber and polypropylene fiber) for a tunnel liner application. The tested macrosynthetic fiber-reinforced concrete has a better strength than steel fiber-reinforced concrete. The tested concrete with blast furnace slag has a higher chloride ion penetration resistance (less permeable), but its compressive and flexural strengths can be reduced with blast furnace slag content increase. Also, the hybrid fiber-reinforced concrete has higher compressive strength, flexural strength, chloride ion water permeability resistance, impact resistance, and abrasion resistance than the macrosynthetic fiber-reinforced concrete. The modified fiber improved the performance of concrete, and the hybrid fiber was found to control the formation of micro- and macrocracks more effectively. Therefore, overall performance of the hybrid fiber-reinforced concrete was found superior to the other fiber-reinforced concrete mixes tested for this study. The test results also indicated that macrosynthetic fiber could replace the steel fiber as a concrete reinforcement.

Author(s):  
Natalia Sharma

Abstract: Reinforced concrete structures are frequently in need of repair and strengthening as a result of numerous environmental causes, ageing, or material damage under intense stress conditions, as well as mistakes made during the construction process. RC structures are repaired using a variety of approaches nowadays. The usage of FRC is one of the retrofitting strategies. Steel fiber reinforced concrete (SFRC) was used in this investigation because it contains randomly dispersed short discrete steel fibers that operate as internal reinforcement to improve the cementitious composite's characteristics (concrete). The main rationale for integrating small discrete fibers into a cement matrix is to reduce the amount of cement used. The principal reason for incorporating short discrete fibers into a cement matrix is to reduce cracking in the elastic range, increase the tensile strength and deformation capacity and increase the toughness of the resultant composite. These properties of SFRC primarily depend upon length and volume of Steel fibers used in the concrete mixture. In India, the steel fiber reinforced concrete (SFRC) has seen limited applications in several structures due to the lack of awareness, design guidelines and construction specifications. Therefore, there is a need to develop information on the role of steel fibers in the concrete mixture. The experimental work reported in this study includes the mechanical properties of concrete at different volume fractions of steel fibers. These mechanical properties include compressive strength, split tensile strength and flexural strength and to study the effect of volume fraction and aspect ratio of steel fibers on these mechanical properties. However, main aim of the study was significance of reinforced concrete beams strengthened with fiber reinforced concrete layer and to investigate how these beams deflect under strain. The objective of the investigation was finding that applying FRC to strengthen beams enhanced structural performance in terms of ultimate load carrying capacity, fracture pattern deflection, and mode of failure or not.


Sign in / Sign up

Export Citation Format

Share Document