scholarly journals Prediction of Wind Velocity to Raise Vortex-Induced Vibration through a Road-Rail Bridge with Truss-Shaped Girder

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Seungtaek Oh ◽  
Sung-il Seo ◽  
Hoyeop Lee ◽  
Hak-Eun Lee

Vortex-induced vibration (VIV) of bridges, related to fluid-structure interaction and maintenance of bridge monitoring system, causes fatigue and serviceability problems due to aerodynamic instability at low wind velocity. Extensive studies on VIV have been performed by directly measuring the vortex shedding frequency and the wind velocity for indicating the largest girder displacement. However, previous studies have not investigated a prediction of wind velocity to raise VIV with a various natural frequency of the structure because most cases have been focused on the estimation of the wind velocity and peeling-off frequency by the mounting structure at the fixed position. In this paper, the method for predicting wind velocity to raise VIV is suggested with various natural frequencies on a road-rail bridge with truss-shaped girder. For this purpose, 12 cases of dynamic wind tunnel test with different natural frequencies are performed by the resonance phenomenon. As a result, it is reasonable to predict wind velocity to raise VIV with maximum RMS displacement due to dynamic wind tunnel tests. Furthermore, it is found that the natural frequency can be used instead of the vortex shedding frequency in order to predict the wind velocity on the dynamic wind tunnel test. Finally, curve fitting is performed to predict the wind velocity of the actual bridge. The result is shown that predicting the wind velocity at which VIV occurs can be appropriately estimated at arbitrary natural frequencies of the dynamic wind tunnel test due to the feature of Strouhal number determined by the shape of the cross section.

2004 ◽  
Vol 127 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Z. J. Wang ◽  
Y. Zhou

The vortex-induced structural vibration of an elastic square cylinder, on fixed supports at both ends, in a uniform cross flow was measured using fiber-optic Bragg grating sensors. The measurements are compared to those obtained for an elastic circular cylinder of the same hydraulic diameter in an effort to understand the effect of the nature (fixed or oscillating) of the flow separation point on the vortex-induced vibration. It is found that a violent vibration occurs at the third-mode resonance when the vortex-shedding frequency coincides with the third-mode natural frequency of the fluid-structure system, irrespective of the cross-sectional geometry of the cylinder. This is in distinct contrast to previous reports of flexibly supported rigid cylinders, where the first-mode vibration dominates, thus giving little information on the vibration of other modes. The resonance behavior is neither affected by the incidence angle (α) of the free stream, nor by the nature of the flow separation point. However, the vibration amplitude of the square cylinder is about twice that of the circular cylinder even though the flexural rigidity of the former is larger. This is ascribed to a difference in the nature of the flow separation point between the two types of structures. The characteristics of the effective modal damping ratios, defined as the sum of structural and fluid damping ratios, and the system natural frequencies are also investigated. The damping ratios and the system natural frequencies vary little with the reduced velocity at α=0deg, but appreciable at α⩾15deg; they further experience a sharp variation, dictated by the vortex-shedding frequency, near resonance.


Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li ◽  
Lijun Yin

In this paper, wind-induced vibration of a super-high tower is numerically studied. The natural frequencies of the tower are calculated. Karman’s Vortex Street is simulated and the alternate lateral forces across the wind are obtained. It is found that with the wind speed range of 0–52.3m/s acting on the tower, the maximum vortex shedding frequency is lower than the second natural frequency of the tower. Resonance of the tower could occur at the first natural frequency with the horizontal force amplitude 241.5N/m. For high towers, it is suggested that the wind actions in across the wind and fatigue strength checks should also be considered in the design approach.


2019 ◽  
Vol 31 (1) ◽  
pp. 137-151
Author(s):  
E Azadi Yazdi

A vortex-induced vibration energy harvester consists of a relatively long cylinder mounted on a flexible structure. In a flow field, the periodically shedding vortices induce transverse vibrations in the cylinder that is converted to electricity by means of piezoelectric generators. In most vortex-induced vibration harvesters, the output power is considerable only in a narrow band around the wind speed where the vortex shedding frequency matches the natural frequency of the structure. To overcome this limitation, a tuned mass mechanism is employed in the proposed vortex-induced vibration energy harvester that can change the natural frequency of the turbine to match the vortex shedding frequency in a broad band of wind speeds. The tuned mass mechanism should work in close cooperation with the piezoelectric generators to maximize the electric power of the turbine. To this end, a nonlinear piezoaeroelastic model of the system is derived, and a model predictive control technique is formulated to find the optimal control inputs for the tuned mass actuator and the piezoelectric generators. Results of numeric simulations confirmed that the tuned mass mechanism not only increases the velocity band over which the turbine is effective but also increases the peak power output of the turbine by 294%.


Author(s):  
Junxiang Shi ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

A passive, self-agitating method which takes advantage of vortex-induced vibration (VIV) is presented to disrupt the thermal boundary layer and thereby enhance the convective heat transfer performance of a channel. A flexible cylinder is placed at centerline of a channel. The vortex shedding due to the presence of the cylinder generates a periodic lift force and the consequent vibration of the cylinder. The fluid-structure-interaction (FSI) due to the vibration strengthens the disruption of the thermal boundary layer by reinforcing vortex interaction with the walls, and improves the mixing process. This novel concept is demonstrated by a three-dimensional modeling study in different channels. The fluid dynamics and thermal performance are discussed in terms of the vortex dynamics, disruption of the thermal boundary layer, local and average Nusselt numbers (Nu), and pressure loss. At different conditions (Reynolds numbers, channel geometries, material properties), the channel with the VIV is seen to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% in comparison with a clean channel and a channel with a stationary cylinder, respectively. The cylinder with the natural frequency close to the vortex shedding frequency is proved to have the maximum heat transfer enhancement. When the natural frequency is different from the vortex shedding frequency, the lower natural frequency shows a higher heat transfer rate and lower pressure loss than the larger one.


2014 ◽  
Vol 617 ◽  
pp. 280-284
Author(s):  
Petr Michálek ◽  
David Zacho

Wind tunnel measurements of vortex shedding behind cooling tower models were performed in VZLU. Two variants of cooling tower models were used, i.e. model with smooth wall outer surface and model with rough wall surface. Measurements were conducted using hot-wire anemometer. Time signal from the anemometer was transformed using Fast-Fourier routine into frequency spectrum. Measurements have shown significant differences between smooth and rough variant of model surface and dependency of vortex shedding frequency on Reynolds number.


1981 ◽  
Vol 103 (3) ◽  
pp. 231-236 ◽  
Author(s):  
A. K. Whitney ◽  
J. S. Chung ◽  
B. K. Yu

Lateral vibrational displacements and accelerations due to vortex shedding are analyzed for very long marine pipes with a bottom end mass for application to deep ocean-mining lift pipes. Estimates of maximum RMS values of displacement and acceleration are presented for a range of tow speeds, pipe lengths, pipe diameters and wall thicknesses, and for various values of the pipe end mass. In contrast to the case of short pipes, higher modes of pipe vibration can be excited even at low towing speeds. In addition, the critical tow speeds, at which the vortex-shedding frequency equals a pipe natural frequency, are closely spaced, and there are no speeds where the vibrations vanish.


2008 ◽  
Vol 45 (04) ◽  
pp. 221-227
Author(s):  
Raymond Fischer

This paper examines the hydroacoustic processes involved with "singing propellers" aboard marine vessels. Methods are presented to determine the potential for a resonant response of a propeller to a vortex shedding excitation—a phenomenon known as "singing." Methods are provided to determine the likely shedding frequency and structural natural frequency for propeller blades. Diagnostics procedures to determine the presence of singing are explored. Measured and theoretical differences between the blade's natural frequency response in air and in-water are explored. Treatments are identified to change the vortex shedding frequency or to de-tune the structure. Case histories are detailed showing the potential magnitude of the problem and effective solutions.


Author(s):  
Eric D’herde ◽  
Laila Guessous

Flow over a cylinder is a fundamental fluid mechanics problem that involves a simple geometry, yet increasingly complex flow patterns as the Reynolds number is increased, most notably the development of a Karman vortex with a natural vortex shedding frequency fs when the Reynolds number exceeds a value of about 40. The goal of this ongoing study is to numerically investigate the effect of an incoming free-stream velocity pulsation with a mean Reynolds number of 100 on the drag force over and vorticity dynamics behind a circular cylinder. This paper reports on initial results involving unsteady, laminar and incompressible flows over a circular cylinder. Sinusoidal free-stream pulsations with amplitudes Av varying between 25% and 75% of the mean free-stream velocity and frequencies f varying between 0.25 and 5 times the natural shedding frequency were considered. Of particular interest to us is the interaction between the pulsating frequency and natural vortex shedding frequency and the resulting effects on drag. Interestingly, at frequencies close to the natural frequency, and to twice the natural frequency, a sudden drop in the mean value of the drag coefficient is observed. This drop in the drag coefficient is also accompanied by a change in the flow and vortex shedding patterns observed behind the cylinder.


2001 ◽  
Vol 443 ◽  
pp. 197-229 ◽  
Author(s):  
Y. ZHOU ◽  
Z. J. WANG ◽  
R. M. C. SO ◽  
S. J. XU ◽  
W. JIN

Free vibrations of two side-by-side cylinders with fixed support (no rotation and displacement) at both ends placed in a cross-flow were experimentally investigated. Two fibre-optic Bragg grating sensors were used to measure the dynamic strain, while a hot wire and flow visualization were employed to examine the flow field around the cylinders. Three T/d ratios, 3.00, 1.70 and 1.13, were investigated, where T is the centre-to-centre cylinder spacing and d is the diameter; they give rise to three different flow regimes. The investigation throws new light on the shed vortices and their evolution. A new interpretation is proposed for the two different dominant frequencies, which are associated with the narrow and the wide wake when the gap between the cylinders is between 1.5 and 2.0 as reported in the literature. The structural vibration behaviour is closely linked to the flow characteristics. At T/d = 3:00, the cross-flow root-mean-square strain distribution shows a very prominent peak at the reduced velocity Ur ≈ 26 when the vortex shedding frequency fs, coincides with the third-mode natural frequency of the combined fluid–cylinder system. When T/d < 3:00, this peak is not evident and the vibration is suppressed because of the weakening strength of the vortices. The characteristics of the system modal damping ratios, including both structural and fluid damping, and natural frequencies are also investigated. It is found that both parameters depend on T/d. Furthermore, they vary slowly with Ur, except near resonance where a sharp variation occurs. The sharp variation in the natural frequencies of the combined system is dictated by the vortex shedding frequency, in contrast with the lock-in phenomenon, where the forced vibration of a structure modifies the vortex shedding frequency. This behaviour of the system natural frequencies persists even in the case of the single cylinder and does not seem to depend on the interference between cylinders. A linear analysis of an isolated cylinder in a cross-flow has been carried out. The linear model prediction is qualitatively consistent with the experimental observation of the system damping ratios and natural frequencies, thus providing valuable insight into the physics of fluid–structure interactions.


Author(s):  
Philippe Ausoni ◽  
Mohamed Farhat ◽  
Franc¸ois Avellan

The present study deals with the shedding process of the Ka´rma´n vortices in the wake of a NACA0009 hydrofoil at high Reynolds number, Reh = 25·103 − 65·103. This research addresses the effects of the foil leading edge roughness on the wake dynamic with a special focus on the vortex shedding frequency, vortex-induced vibration and three-dimensionality of vortex shedding. For smooth leading edge, the shedding frequency of Ka´rma´n vortices occurs at constant Strouhal number, St = 0.24. The wake exhibits 3D instabilities and the vortex induced vibration signals strong modulation with intermittent weak shedding cycles. Direct relation between vibration amplitude and vortex spanwise organization is shown. In the case of rough leading edge, the Ka´rma´n shedding frequency is notably decreased compared to the smooth one, St = 0.18. Moreover, the vortex induced vibration level is significantly increased and the vibration spectra sharply peaked. The occurrence of vortex dislocations is shown to be less frequent with the roughness. The shedding of the vortices is considered on the whole as in phase along the hydrofoil span. Obviously, the shedding process of the Ka´rma´n vortices is highly related to the state of the boundary layer over the entire hydrofoil. It is believed that in the case of smooth leading edge, slight spanwise non-uniformities in the boundary-layer flow lead to slight instantaneous variation in vortex shedding frequency along the span which is enough to trigger vortex dislocations. On the contrary, for the rough leading edge, the location of transition to turbulence is uniformly forced which leads to the reduction of the spanwise boundary-layer non-uniformities and therefore to the enhancement of the coherence length of the Ka´rma´n vortices.


Sign in / Sign up

Export Citation Format

Share Document