Free vibrations of two side-by-side cylinders in a cross-flow

2001 ◽  
Vol 443 ◽  
pp. 197-229 ◽  
Author(s):  
Y. ZHOU ◽  
Z. J. WANG ◽  
R. M. C. SO ◽  
S. J. XU ◽  
W. JIN

Free vibrations of two side-by-side cylinders with fixed support (no rotation and displacement) at both ends placed in a cross-flow were experimentally investigated. Two fibre-optic Bragg grating sensors were used to measure the dynamic strain, while a hot wire and flow visualization were employed to examine the flow field around the cylinders. Three T/d ratios, 3.00, 1.70 and 1.13, were investigated, where T is the centre-to-centre cylinder spacing and d is the diameter; they give rise to three different flow regimes. The investigation throws new light on the shed vortices and their evolution. A new interpretation is proposed for the two different dominant frequencies, which are associated with the narrow and the wide wake when the gap between the cylinders is between 1.5 and 2.0 as reported in the literature. The structural vibration behaviour is closely linked to the flow characteristics. At T/d = 3:00, the cross-flow root-mean-square strain distribution shows a very prominent peak at the reduced velocity Ur ≈ 26 when the vortex shedding frequency fs, coincides with the third-mode natural frequency of the combined fluid–cylinder system. When T/d < 3:00, this peak is not evident and the vibration is suppressed because of the weakening strength of the vortices. The characteristics of the system modal damping ratios, including both structural and fluid damping, and natural frequencies are also investigated. It is found that both parameters depend on T/d. Furthermore, they vary slowly with Ur, except near resonance where a sharp variation occurs. The sharp variation in the natural frequencies of the combined system is dictated by the vortex shedding frequency, in contrast with the lock-in phenomenon, where the forced vibration of a structure modifies the vortex shedding frequency. This behaviour of the system natural frequencies persists even in the case of the single cylinder and does not seem to depend on the interference between cylinders. A linear analysis of an isolated cylinder in a cross-flow has been carried out. The linear model prediction is qualitatively consistent with the experimental observation of the system damping ratios and natural frequencies, thus providing valuable insight into the physics of fluid–structure interactions.

2004 ◽  
Vol 127 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Z. J. Wang ◽  
Y. Zhou

The vortex-induced structural vibration of an elastic square cylinder, on fixed supports at both ends, in a uniform cross flow was measured using fiber-optic Bragg grating sensors. The measurements are compared to those obtained for an elastic circular cylinder of the same hydraulic diameter in an effort to understand the effect of the nature (fixed or oscillating) of the flow separation point on the vortex-induced vibration. It is found that a violent vibration occurs at the third-mode resonance when the vortex-shedding frequency coincides with the third-mode natural frequency of the fluid-structure system, irrespective of the cross-sectional geometry of the cylinder. This is in distinct contrast to previous reports of flexibly supported rigid cylinders, where the first-mode vibration dominates, thus giving little information on the vibration of other modes. The resonance behavior is neither affected by the incidence angle (α) of the free stream, nor by the nature of the flow separation point. However, the vibration amplitude of the square cylinder is about twice that of the circular cylinder even though the flexural rigidity of the former is larger. This is ascribed to a difference in the nature of the flow separation point between the two types of structures. The characteristics of the effective modal damping ratios, defined as the sum of structural and fluid damping ratios, and the system natural frequencies are also investigated. The damping ratios and the system natural frequencies vary little with the reduced velocity at α=0deg, but appreciable at α⩾15deg; they further experience a sharp variation, dictated by the vortex-shedding frequency, near resonance.


Author(s):  
Aimie Faucett ◽  
Todd Harman ◽  
Tim Ameel

Flow around a rigid, truncated, wall-mounted cylinder with an aspect ratio of 5 is examined computationally at various Reynolds numbers Re to determine how the end effects impact the vortex shedding frequency. The existence of the wall and free end cause a dampening of the classical shedding frequency found for a semi-infinite, two-dimensional cylinder, as horseshoe vortices along the wall and flow over the tip entrain into the shedding region. This effect was observed for Reynolds numbers in the range of 50 to 2000, and quantified by comparing the modified Strouhal numbers to the classical (two-dimensional) solution for Strouhal number as a function of Reynolds number. The range of transition was found to be 220 < Re < 300, versus 150 < Re < 300 for the classical case. Vortex shedding started at Re ≈ 100, significantly above Re = 50, where shedding starts for the two-dimensional case.


Author(s):  
Aleš Tondl

Abstract A pendulum is attached to an elastically mounted body in cross flow. The body is excited due to the action of vortex shedding. The stability of the semi-trivial solution (representing the vibration of the body with the non-oscillating pendulum) is investigated. It is proved that a certain interval of the vortex shedding frequency can exist where the semi-trivial solution representing the vertical vibration of the body is unstable. The body vibration is the source of parametric excitation of the pendulum resulting in autoparametric resonance.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Seungtaek Oh ◽  
Sung-il Seo ◽  
Hoyeop Lee ◽  
Hak-Eun Lee

Vortex-induced vibration (VIV) of bridges, related to fluid-structure interaction and maintenance of bridge monitoring system, causes fatigue and serviceability problems due to aerodynamic instability at low wind velocity. Extensive studies on VIV have been performed by directly measuring the vortex shedding frequency and the wind velocity for indicating the largest girder displacement. However, previous studies have not investigated a prediction of wind velocity to raise VIV with a various natural frequency of the structure because most cases have been focused on the estimation of the wind velocity and peeling-off frequency by the mounting structure at the fixed position. In this paper, the method for predicting wind velocity to raise VIV is suggested with various natural frequencies on a road-rail bridge with truss-shaped girder. For this purpose, 12 cases of dynamic wind tunnel test with different natural frequencies are performed by the resonance phenomenon. As a result, it is reasonable to predict wind velocity to raise VIV with maximum RMS displacement due to dynamic wind tunnel tests. Furthermore, it is found that the natural frequency can be used instead of the vortex shedding frequency in order to predict the wind velocity on the dynamic wind tunnel test. Finally, curve fitting is performed to predict the wind velocity of the actual bridge. The result is shown that predicting the wind velocity at which VIV occurs can be appropriately estimated at arbitrary natural frequencies of the dynamic wind tunnel test due to the feature of Strouhal number determined by the shape of the cross section.


Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li ◽  
Lijun Yin

In this paper, wind-induced vibration of a super-high tower is numerically studied. The natural frequencies of the tower are calculated. Karman’s Vortex Street is simulated and the alternate lateral forces across the wind are obtained. It is found that with the wind speed range of 0–52.3m/s acting on the tower, the maximum vortex shedding frequency is lower than the second natural frequency of the tower. Resonance of the tower could occur at the first natural frequency with the horizontal force amplitude 241.5N/m. For high towers, it is suggested that the wind actions in across the wind and fatigue strength checks should also be considered in the design approach.


2021 ◽  
Author(s):  
Mohammed Alziadeh ◽  
Atef Mohany

Abstract This article explores different equivalent diameter equations found in the literature for shedding frequency scaling and applying it to various types of finned cylinders in industrial heat exchangers. The focus is on three finned cylinder types: straight, twist-serrated, and crimped spirally finned cylinders. Within each finned cylinder category, at least three different finned cylinders are investigated. The results indicate that utilizing the appropriate equivalent diameter for vortex shedding frequency scaling collapses the data within the Strouhal bounds of a bare cylinder away from resonance excitation. However, the onset of flow-excited acoustic resonance and peak acoustic pressure in all the finned cylinder cases occur at a reduced flow velocity earlier than their equivalent diameter bare cylinder. This suggests that although utilizing the appropriate equivalent diameter can predict the shedding frequency away from resonance, it cannot be used in velocity scaling to predict the onset of acoustic resonance in finned tube bundle.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 100 ◽  
Author(s):  
Jorge Silva-Leon ◽  
Andrea Cioncolini

This paper presents experimental results on the vortex shedding frequency measured behind a bent cylinder. Experiments were conducted in a wind tunnel covering Reynolds numbers between 50 and 500, a range of interest for flow sensing, flow control, and energy harvesting applications. The bent cylinder comprised a vertical leg always oriented at normal incidence with respect to the free-stream flow, and an inclined leg whose inclination was varied during the tests between 90° and 15°. The bent cylinder was oriented in the wind tunnel with the vertical leg upstream and the inclined leg downstream, and the vortex shedding frequency was measured with hot-wire anemometry at several locations behind the inclined leg. The present bent cylinder design improves upon those previously considered by providing a finer control on the upstream boundary condition acting upon the inclined leg, which in the present design is not affected by the yaw angle of the inclined leg. With the exception of free-end effects, only noticeable for certain inclinations and Reynolds number values, inclination effects were surprisingly not observed, and the frequency of vortex shedding measured behind the inclined leg of the bent cylinder was consistent (within a few percent) with the cross-flow vortex shedding frequency at the same flow velocity. The present results corroborate and significantly extend the limited observations on bent cylinders available in the literature, further highlighting the importance of the upstream boundary condition on the vortex shedding process with inclined cylinders.


1984 ◽  
Vol 106 (1) ◽  
pp. 70-78 ◽  
Author(s):  
A. J. Grass ◽  
P. W. J. Raven ◽  
R. J. Stuart ◽  
J. A. Bray

The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document