scholarly journals A New Hybrid Model Based on Fruit Fly Optimization Algorithm and Wavelet Neural Network and Its Application to Underwater Acoustic Signal Prediction

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hong Yang ◽  
Siliang Wang ◽  
Guohui Li ◽  
Tongtong Mao

The local predictability of underwater acoustic signal plays an important role in underwater acoustic signal processing, and it is the basis of nonstationary signal detection. Wavelet neural network model, with the advantages of both wavelet analysis and artificial neural network, makes full use of the time-frequency localization characteristics of wavelet analysis and the self-learning ability of artificial neural network; however, this model is prone to fall into local minima or creates convergence. To overcome these disadvantages, a new hybrid model based on fruit fly optimization algorithm (FOA) and wavelet neural network (WNN) is proposed in this paper. The FOA-WNN prediction model is constructed by optimizing the weights and thresholds of wavelet neural network, and the model is applied to underwater acoustic signal prediction. The experimental results show that the FOA-WNN prediction model has higher prediction accuracy and smaller prediction error, compared with wavelet neural network prediction model and BP neural network prediction model.

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Mina Salehi ◽  
Siamak Farhadi ◽  
Ahmad Moieni ◽  
Naser Safaie ◽  
Mohsen Hesami

Abstract Background Paclitaxel is a well-known chemotherapeutic agent widely applied as a therapy for various types of cancers. In vitro culture of Corylus avellana has been named as a promising and low-cost strategy for paclitaxel production. Fungal elicitors have been reported as an impressive strategy for improving paclitaxel biosynthesis in cell suspension culture (CSC) of C. avellana. The objectives of this research were to forecast and optimize growth and paclitaxel biosynthesis based on four input variables including cell extract (CE) and culture filtrate (CF) concentration levels, elicitor adding day and CSC harvesting time in C. avellana cell culture, as a case study, using general regression neural network-fruit fly optimization algorithm (GRNN-FOA) via data mining approach for the first time. Results GRNN-FOA models (0.88–0.97) showed the superior prediction performances as compared to regression models (0.57–0.86). Comparative analysis of multilayer perceptron-genetic algorithm (MLP-GA) and GRNN-FOA showed very slight difference between two models for dry weight (DW), intracellular and extracellular paclitaxel in testing subset, the unseen data. However, MLP-GA was slightly more accurate as compared to GRNN-FOA for total paclitaxel and extracellular paclitaxel portion in testing subset. The slight difference was observed in maximum growth and paclitaxel biosynthesis optimized by FOA and GA. The optimization analysis using FOA on developed GRNN-FOA models showed that optimal CE [4.29% (v/v)] and CF [5.38% (v/v)] concentration levels, elicitor adding day (17) and harvesting time (88 h and 19 min) can lead to highest paclitaxel biosynthesis (372.89 µg l−1). Conclusions Great accordance between the predicted and observed values of DW, intracellular, extracellular and total yield of paclitaxel, and also extracellular paclitaxel portion support excellent performance of developed GRNN-FOA models. Overall, GRNN-FOA as new mathematical tool may pave the way for forecasting and optimizing secondary metabolite production in plant in vitro culture.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hong Yang ◽  
Lipeng Gao ◽  
Guohui Li

Aiming at the chaotic characteristics of underwater acoustic signal, a prediction model of grey wolf-optimized kernel extreme learning machine (OKELM) based on MVMD is proposed in this paper for short-term prediction of underwater acoustic signals. To solve the problem of K value selection in variational mode decomposition, a new K value selection method MVMD is proposed from the perspective of mutual information, which avoids the blindness of variational mode decomposition (VMD) in the preset modal number. Based on the prediction model of kernel extreme learning machine (KELM), this paper uses grey wolf optimization (GWO) algorithm to optimize and select its regularization parameters and kernel parameters and proposes an optimized kernel extreme learning machine OKELM. To further improve the prediction performance of the model, combined with MVMD, an underwater acoustic signal prediction model based on MVMD-OKELM is established. MVMD-OKELM prediction model is applied to Mackey–Glass chaotic time series prediction and underwater acoustic signal prediction and is compared with ARIMA, EMD-OKELM, and other prediction models. The experimental results show that the proposed MVMD-OKELM prediction model has a higher prediction accuracy and can be effectively applied to the prediction of underwater acoustic signal series.


2011 ◽  
Vol 121-126 ◽  
pp. 4847-4851 ◽  
Author(s):  
Hui Zhen Yang ◽  
Wen Guang Zhao ◽  
Wei Chen ◽  
Xu Quan Chen

Wavelet Neural Network (WNN) is a new form of neural network combined with the wavelet theory and artificial neural network. The wavelet neural network model based on Morlet wavelet and the corresponding learning algorithm were studied in this paper. And through learning the wavelet neural network model is applied to all kinds of engineering examples, it proved that the wavelet neural network prediction model which has a more flexible and efficient function approximation ability and strong fault tolerance, and with high predicting precision.


Sign in / Sign up

Export Citation Format

Share Document